

Matters of National Environmental Significance Management Plan Annual Report – 2020/2021

Meteor Downs South Rail Loop Project

Sojitz Blue Pty Ltd

APPROVALS

Rev	Date	Description
0	16 June 2021	Draft issued for client review
1	28 June 2021	Final report addressing client comments

	Name	Position	Date
ORIGINATORS	Dean Orrick Rose Easton	Ecologist Environmental Scientist	28 June 2021
APPROVER	Dr Jarrad Cousin	Principal Ecologist	28 June 2021

Commercial in Confidence

This document is provided expressly subject to the terms of PO27894 issued by Sojitz Blue Pty Ltd ('Engagement Agreement'). This advice is for the sole benefit of the Client. The information and opinions contained in this document are strictly confidential. Accordingly, the contents of this document or opinions subsequently supplied will constitute confidential information and may not, without the written consent of CO2 Australia, be published, reproduced, copied or disclosed to any person (other than your advisors having a need to know and who are aware that it is confidential), nor used for any purpose other than in connection with its intended use.

Disclaimer

The information in this document has not been independently verified as to its accuracy or completeness. This document is based on the information available at the time of preparation as well as certain assumptions. No representation or warranty, express or implied, is given by CO2 Australia or any of its directors, officers, affiliates, employees, advisers or agents (and any warranty expressed or implied by statute is hereby excluded (to the extent permitted by law)) as to the accuracy or completeness of the contents of this document or any other information supplied, or which may be supplied at any time or any opinions or projections expressed herein or therein, nor is any such party under any obligation to update this document or correct any inaccuracies or omissions in it which may exist or become apparent.

To the extent permitted by law, CO2 Australia limits its liability in accordance with the terms of the Engagement Agreement. Subject to the terms of the Engagement Agreement, no responsibility or liability is accepted for any loss or damage howsoever arising that you may suffer as a result of this document or reliance on the contents of this document and any and all responsibility and liability is expressly disclaimed (to the extent permitted by law) by CO2 Australia and any of its respective directors, partners, officers, affiliates, employees, advisers or agents.

Marketing

If, in any document or other communication to be made public or disclosed to a government agency, the Client wishes to make reference to the use of CO2 Australia's services, CO2 Australia's consent must first be obtained, and this will not unreasonably be withheld.

Maps

The maps in this document are based on or contain data that has been provided by the State which gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data.

CO2 Australia recognises the First Nations of Australia. We acknowledge the Traditional Custodians who have lived on and cared for Country, and their continuing connection to the land, and extend our respects to all First Nations Peoples.

CONTENTS

1	Inti	oduction	1
	1.1	Background	1
	1.2	Purpose and Scope	1
2	Pro	ject details	2
3	Cur	rent Conditions	4
4	Rep	orting period activities	5
	4.1	Construction and operation	5
	4.2	Mitigation and management measures	5
	4.3	Monitoring activities	6
5	Adl	nerence to performance criteria	17
6	Pot	ential threats and risks	19
7	Am	endments to Rail Loop MNESMP	19
8	Ma	nagement, Monitoring and Reporting Schedule – 2021/2022	20
9	Ref	erences	24
Ар	pend	x A Dry Season Monitoring Report (2020/21) (CO2 Australia 2020)	A-1
Ар	pend	x B Post-wet Season Monitoring Report (2020/21) (CO2 Australia 2021)	B-1

LIST OF FIGURES

Figure 1: Rail loop location	3
Figure 2: Rainfall recorded during the 2020/2021 management period.	4
Figure 3: Temperature recorded during the 2020/2021 management period	4
Figure 4: Clearance area	7
Figure 5: Monitoring sites	9
Figure 6: Changes in habitat quality scores for MNES between 2020 and 2021	10
Figure 7: Weed monitoring results	13
Figure 8: Graphical representation of the change in biomass at the MDS Rail Loop project site between Jun	
2020 and May 2021.	15

LIST OF TABLES

Table 1: Project details	2
Table 2: Persons undertaking monitoring	6
Table 3: Vegetation clearing impacts	6
Table 4: Site condition and site context scores at each habitat monitoring sites in May 2021	8
Table 5: Monitoring sites showing their habitat quality scores contributing to MNES	10
Table 6: Results of weed monitoring assessments at the MDS Rail Loop site	12
Table 7: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture	
photo standards	14
Table 8: Results of dust monitoring during the 2020/21 reporting period	16
Table 9: Adherence to performance criteria	17
Table 10: Management, mitigation, monitoring and reporting activities for the 2021/2022 reporting perio	d20

ABBREVIATIONS AND ACRONYMS

DAWE	Commonwealth Department of Agriculture, Water and the Environment
EA	The Environmental Authority (EA0001828) for the Meteor Downs Rail Loop
EPBC Act	Commonwealth Environment Protection and Biodiversity Conservation Act 1999
ha	Hectare
MDS Project	The Meteor Downs South Coal Project
MDS Rail Loop Project	The Meteor Downs South Rail Loop Project
MNES	Matters of National Environmental Significance
Rail Loop MNESMP	Matters of National Environmental Significance Management Plan for the MDS Rail Loop Project
RE	Regional Ecosystem
Sojitz Blue	Sojitz Blue Pty Ltd
TEC	Threatened Ecological Community

1 INTRODUCTION

1.1 BACKGROUND

Sojitz Blue Pty Ltd (Sojitz Blue) operates the Meteor Downs South Project (MDS Project) in central Queensland on behalf of its joint venture partner U & D Mining Industry (Australia) Pty Ltd (U&D). The MDS Project is a small open cut coal mining operation located between Rolleston and Springsure in the Central Highlands Regional Council local government area in Queensland.

In order to transport coal from the MDS Project, Sojitz Blue has constructed a rail loop off the existing Blackwater rail system (the MDS Rail Loop Project). The rail loop is located approximately 3 km from the MDS Project access road intersection with the Dawson Highway (Figure 1). A load-out facility, stockpile pad and buildings (office, crib room, control room and ablutions block) have also been constructed as part of the MDS Rail Loop Project.

The MDS Rail Loop Project was subject to a separate approval process to the MDS Project and was approved by the Commonwealth Department of the Environment and Energy (now the Department of Agriculture, Water and the Environment) under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) on 19 December 2019 (EPBC 2019/8482). State Government environmental approval was granted by the Queensland Department of Environment and Science in June 2019 (Environmental Authority EA0001828).

A Matters of National Environmental Significance Management Plan (hereafter Rail Loop MNESMP) was developed by SLR Consulting Australia Pty Ltd (SLR 2019a) as part of the EPBC Act approval process. The Rail Loop MNESMP details how direct and indirect impacts to the following matters of national environmental significance (MNES) will be managed over the life of the project:

- Natural Grasslands of the Queensland Central Highlands and the northern Fitzroy Basin threatened ecological community (Natural Grasslands TEC)
- King blue-grass (Dichanthium queenslandicum).

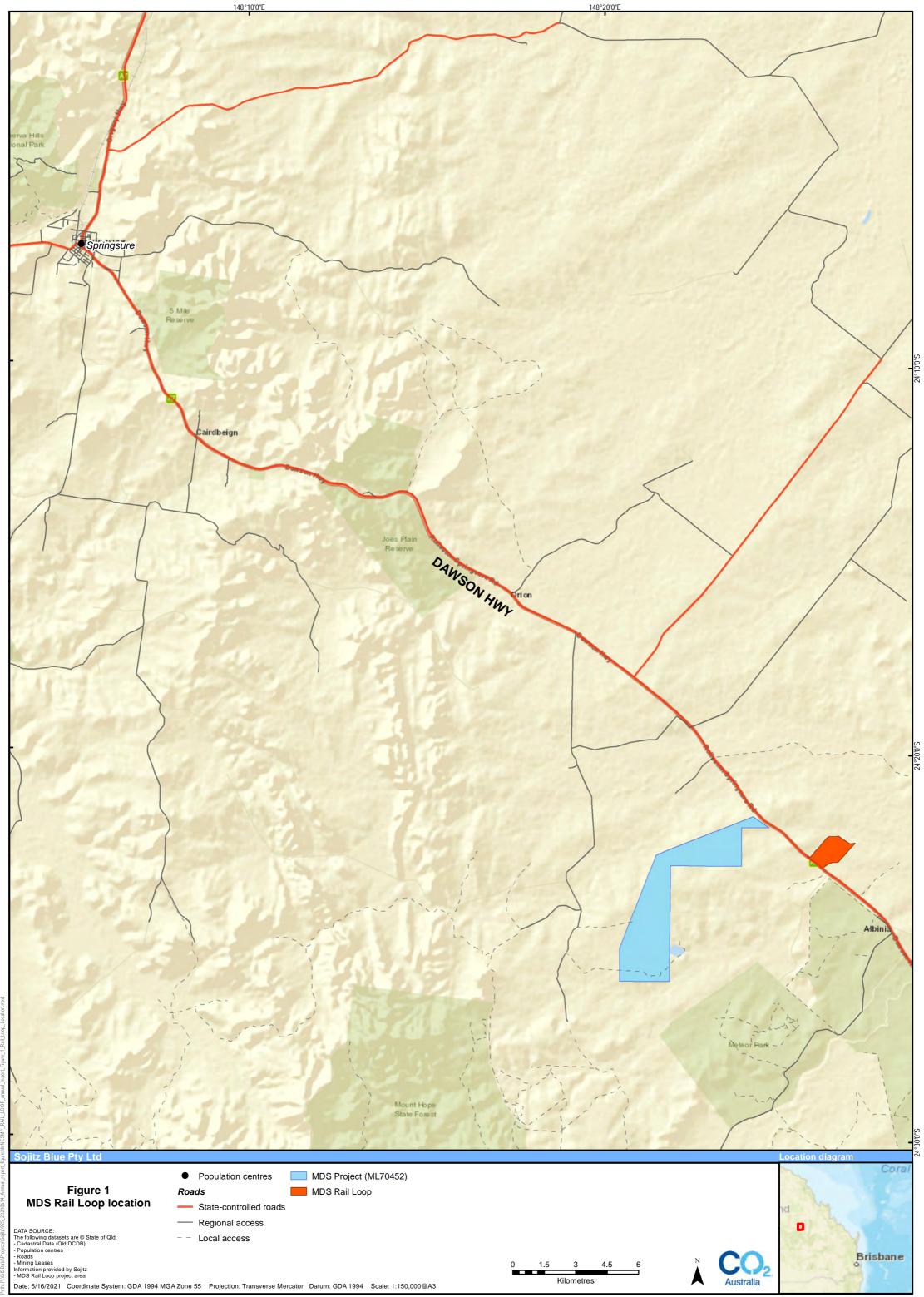
Condition 6 of the EPBC Act approval requires the implementation of the Rail Loop MNESMP.

1.2 PURPOSE AND SCOPE

The Rail Loop MNESMP requires the submission of an annual report to the Commonwealth Department of Agriculture, Water and the Environment (DAWE) by 30 June each year, documenting the implementation of and adherence to the Rail Loop MNESMP.

This report has been prepared by CO2 Australia Limited (CO2 Australia) on behalf of Sojitz Blue for the reporting period from July 2020 to June 2021. The scope of this report includes:

- current project details, including relevant contacts
- climatic conditions during the reporting period
- activities undertaken during the reporting period including:
 - construction and operational activities
 - mitigation and management measures
 - monitoring activities
- > an assessment of the adherence to the performance criteria set out in the Rail Loop MNESMP
- a description of the potential threats and risks to MNES


- proposed amendments to be made to the Rail Loop MNESMP
- details of any corrective actions required to be implemented
- a management, monitoring and reporting schedule for the next reporting period (i.e. July 2021 to June 2022).

2 PROJECT DETAILS

Relevant approval and contact details for the MDS Project are provided in Table 1.

Table 1: Project details

Meteor Downs South Project					
Lot Plan Locations	Lot 56 on DSN808				
EPBC Act Reference No.	EPBC 2019/8482				
Queensland Government Environmental Authority	EA0001828				
	Alec Richards				
Designed Country of	Environmental Advisor				
Project Contact	Sojitz MDS Mining Pty Ltd				
	arichards@sojitzblue.com.au				

© CO2 Australia. All Rights Reserved 2021. CO2 Australia gives no warrantly about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.

3 CURRENT CONDITIONS

During the 2020/2021 management period, a total of 528 mm of rain was recorded at the nearest weather station (Comet Street, Springsure #35065, ~45 km north of the MDS Project Rail Loop) which was 77% of the long-term annual average of 685.3 mm. Notably, the months of April and May leading up to the post-wet season survey only received a total of 7 mm of rain.

The temperature data indicated mean maximum and minimum temperatures were similar to the long-term average from 10 of the 12 months, with the mean maximum and minimum temperatures during the management period ~0.5°C and ~0.6°C above the long-term average, respectively.

In summary, the climate conditions during the 2020/2021 management period could be characterised as being somewhat warmer and drier than normal.

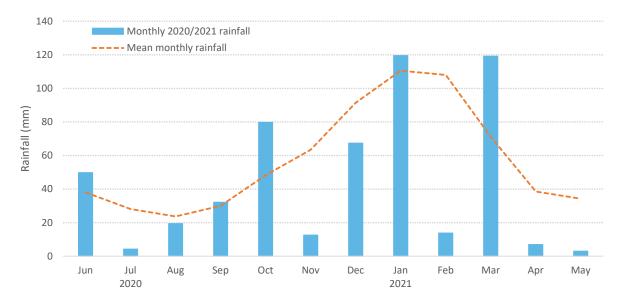


Figure 2: Rainfall recorded during the 2020/2021 management period.

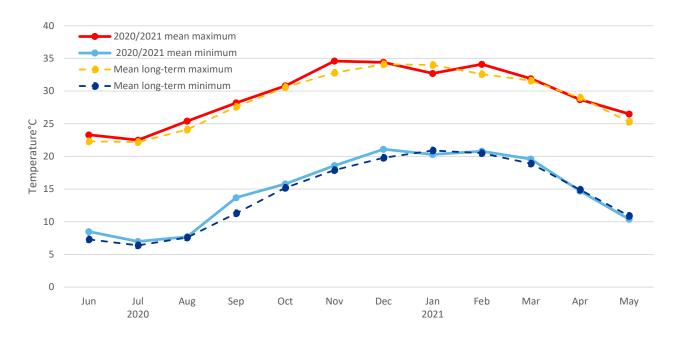


Figure 3: Temperature recorded during the 2020/2021 management period.

4 REPORTING PERIOD ACTIVITIES

4.1 CONSTRUCTION AND OPERATION

All works commencing in February 2020 for the construction of the MDS Rail Loop Project site were completed at the end of July 2020. No further construction works occurred during the current 2020/2021 reporting period.

4.2 MITIGATION AND MANAGEMENT MEASURES

Sections 4.2.1 to 4.2.6 summarise the measures undertaken during the 2020/2021 reporting period to mitigate and manage impacts to MNES on the MDS Rail Loop Project site.

4.2.1 Vegetation clearing controls

As detailed in Section 4.1, construction works including clearing of vegetation, were completed in July 2020. Weighbridge construction for haulage trucks was completed in May 2021. As per the requirements of the Rail Loop MNESMP, the following mitigation and management measures were implemented as part of the vegetation clearing works:

- vegetation clearing boundaries were clearly demarcated prior to vegetation clearing works
- environmental awareness training was developed and provided to all personnel as part of the site induction
- a permit to disturb system was implemented
- the total area of MNES habitat cleared was monitored (see Section 4.3.1).

4.2.2 Weed control

The MDS Project Weed and Pest Management Plan (Sojitz 2018) has been developed for the MDS Project site and will be applied at the MDS Rail Loop Project site. The following measures were undertaken to prevent the introduction, establishment and spread of weeds and pest on the MDS Rail Loop Project site:

- Construction of a weed wash-down facility was completed at the MDS site in April 2021.
- Weed surveys have been carried out as part of the monitoring activities in this reporting period (see Section 4.3.6).

4.2.3 Erosion and sediment control

Permanent erosion and sediment controls have been established around the fill and coal stockpiles to prevent the degradation of adjacent areas of MNES habitat.

4.2.4 Dust suppression

Vegetation clearing works have been limited to the MDS Rail Loop Project footprint, with all clearing completed as part of the construction. There was no issues attributable to dust observed in either the dry season survey (November 2020) or the post-wet season survey (May 2021)(Section 4.3.8).

4.2.5 Fire prevention and preparedness

No uncontrolled fires occurred on the MDS Rail Loop Project site during the 2020/2021 reporting period. Appropriate firefighting equipment was made available and all personnel and contractors were provided with training.

4.2.6 Rehabilitation

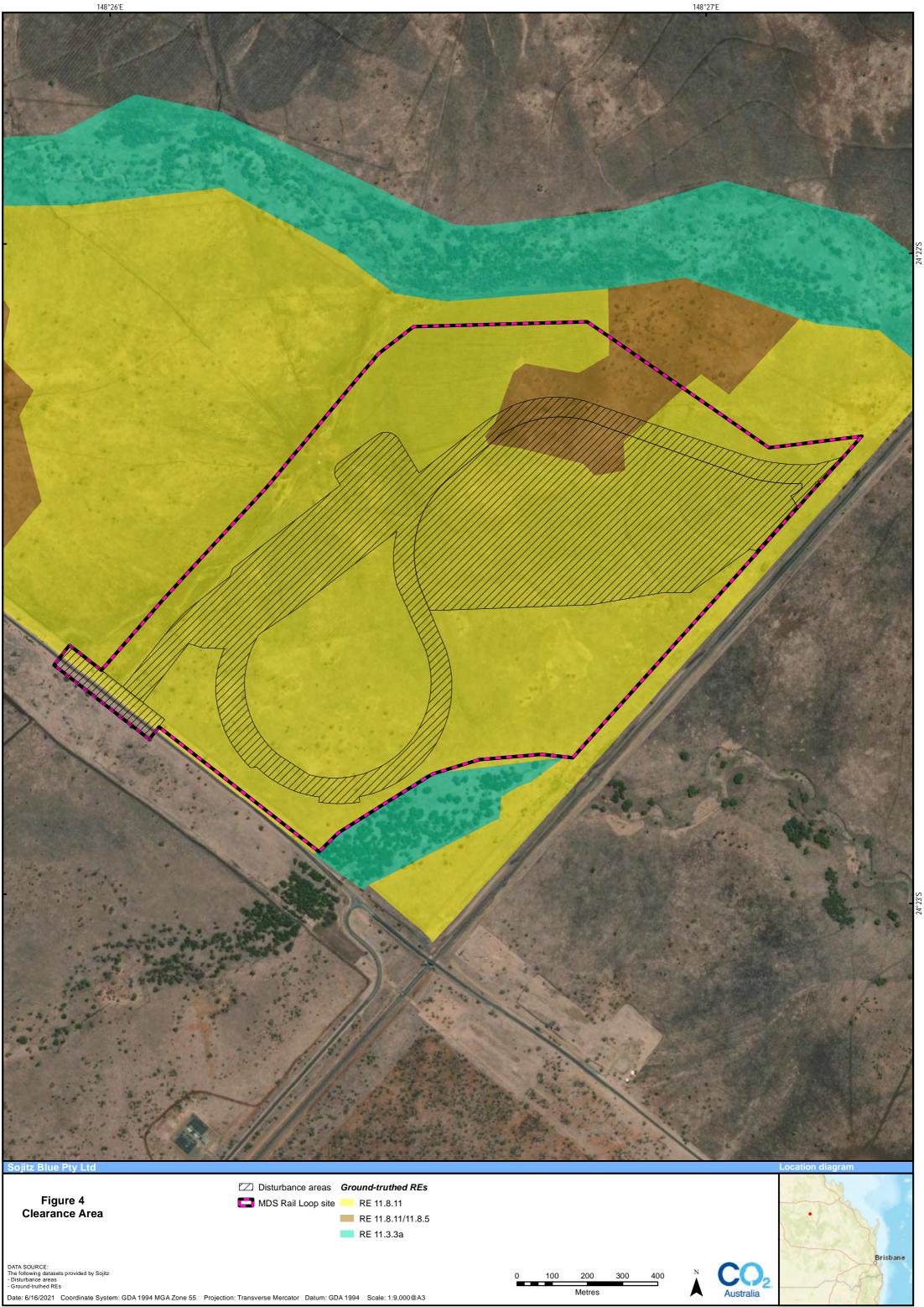
No rehabilitation activities occurred during the 2020/21 monitoring period. Now that all construction has been completed, rehabilitation of temporary areas will be scheduled.

4.3 MONITORING ACTIVITIES

Details and results of monitoring activities undertaken during the 2020/21 reporting period are presented below in Sections 4.3.1 to 4.3.7. Table 2 describes the organisations that implemented each of the monitoring programs under the Rail Loop MNESMP.

Table 2: Persons undertaking monitoring

Monitoring Activity	Organisation		
General site inspections	CO2 Australia		
Vegetation clearing reconciliation	Sojitz Blue		
Habitat condition assessments	CO2 Australia		
Targeted flora and fauna surveys	CO2 Australia		
Weed surveys	CO2 Australia		
Biomass monitoring	CO2 Australia		
Photo monitoring	CO2 Australia		
Dust monitoring	Sojitz Blue		


4.3.1 Monitoring of vegetation clearing

All vegetation clearing works for the MDS Rail Loop Project have been restricted to the project footprint defined in the Rail Loop MNESMP (Figure 4). Consequently, the maximum area of natural grasslands TEC and king blue-grass habitat permitted to be disturbed under the EPBC Act approval has been cleared for the MDS Rail Loop Project (Table 3).

Table 3: Vegetation clearing impacts

MNES	Area cleared to June 2021	Maximum disturbance limits (ha) – EPBC Act approval (EPBC 2019/8482)*	% of actual disturbance limit cleared
Natural grasslands TEC	77	77	100
King blue-grass	19.5	19.5	100

* The Rail Loop MNESMP requires that clearing works do not exceed the disturbance limits specified in the EA. As no clearing limits are specified in the current EA (EA0001828), the maximum disturbance limits in the EPBC Act approval have been used for the purposes of this report.

© CO2 Australia. All Rights Reserved 2021. CO2 Australia gives no warranty about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.

4.3.2 General site inspections

In accordance with the Rail Loop MNESMP, general site inspections were undertaken during both dry season and post-wet season site visits. No concerns were noted regarding the condition of fencing or gates during the general site inspections.

The condition of fencing and gates at the MDS Rail Loop during the post-wet season surveys was still in good condition, and no impacts from dust or particulate matter were observed. It was noted that weed cover measured as part of BioCondition assessments are higher than previous surveys at most sites, particularly at site 04 which is adjacent to the Dawson Highway. Non-native grass species form the majority of weed incursion in the MDS Rail Loop site.

4.3.3 Habitat monitoring

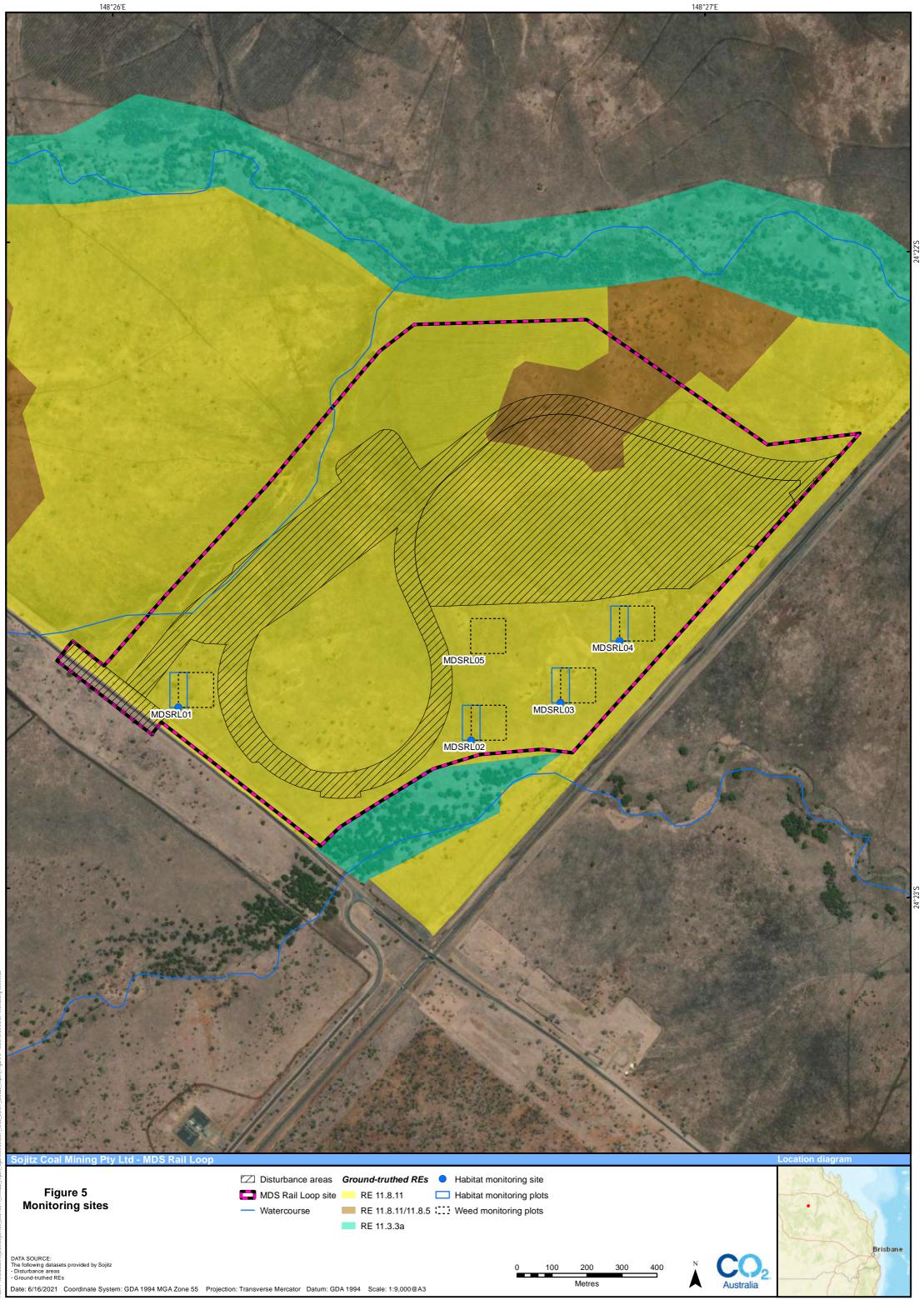
Habitat condition assessments

Habitat condition assessments were conducted in May 2021 at four permanent monitoring sites. Figure 5 shows the locations of each habitat monitoring site. These surveys represent habitat condition assessments during the year 2 management period at the MDS Rail Loop monitoring sites.

Site context was also assessed as part of the habitat condition assessments. Table 4 summarises the site condition and site context scores for each of the four monitoring sites. A detailed description of the habitat condition assessments is provided in the Post-wet Season Monitoring Report (2020/2021) (CO2 Australia 2021) in Appendix A.

The results of the habitat condition assessments were used in the calculation of habitat quality scores for each MNES.

Site RE		Site condition score (/10)	Site context score (/10)	
MDSRL01	11.8.11	5.67	10.00	
MDSRL02	11.8.11	6.17	8.85	
MDSRL03	11.8.11	5.67	8.85	
MDSRL04	11.8.11	4.17	8.85	
Average score		5.42	9.13	


Table 4: Site condition and site context scores at each habitat monitoring sites in May 2021

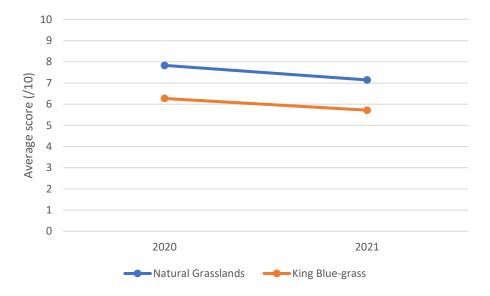
MNES habitat quality scores

Habitat quality scores for each MNES were calculated using a combination of the site condition and site context scores from the habitat condition assessments. The calculation of a habitat quality score for king blue-grass also included species presence index which was informed by targeted surveys for the species.

Table 5 presents the habitat quality scores for the 2020/2021 reporting period for each MNES.

Based on the results of the site condition and assessments, habitat quality scores for the two MNES averaged 7.14 out of 10 for Natural grasslands TEC and 5.71 out of 10 for king blue-grass (Table 5). King blue-grass had the lower score of the two MNES (5.71) on account of the absence of any confirmed king-blue grass tussocks within the surveyed plots at the time of surveying.

© CO2 Australia. All Rights Reserved 2021. CO2 Australia gives no warranty about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.



Site	RE	Natural Grasslands TEC	King blue-grass
MDSRL01	11.8.11	7.68	6.14
MDSRL 02	11.8.11	7.41	5.93
MDSRL 03	11.8.11	7.14	5.71
MDSRL 04	11.8.11	6.34	5.07
	Average score	7.14	5.71

Table 5: Monitoring sites showing their habitat quality scores contributing to MNES

Figure 6 shows the change in the habitat quality scores for each MNES between 2019 and 2021.

The Natural Grasslands TEC and King blue-grass habitat quality score decreased between the 2019/20 and 2020/21 monitoring period. Natural Grassland TEC habitat quality score decreased from 7.83 to 7.14 out of 10 whereas the King blue-grass habitat quality score decreased from 6.27 to 5.71 out of 10 (Figure 6), indicating gradual degradation in habitat quality for both MNES.

4.3.4 Photo monitoring

Photo monitoring was undertaken as part of the post-wet season surveys in May 2021. Photos were taken at the four habitat monitoring sites (Figure 5). Five photos were taken at each monitoring point from a height of approximately 1.5 m looking north, east, south and west with a ground photo taken looking down at an angle of 45°.

Photo monitoring of the MDS Rail Loop site showed relatively consistent levels of biomass, characterised by a moderate grass cover. Whereas many areas of comparable RE 11.8.11 on the MDS project site showed dense grass cover, the MDS Rail Loop site was not consistent with this, despite being represented by the same vegetation community. This is likely a consequence of historical disturbance, with the current condition an indication that the site is in a state of recovery. Ongoing management and photo monitoring should detect that change over time, as the grassland continues to recover.

The results from the photo monitoring are presented in the Post-wet Season Monitoring Report (2020/2021) (CO2 Australia 2020) in Appendix B.

4.3.5 Targeted surveys

Targeted surveys were undertaken for king blue-grass during the 2020 post-wet season surveys. King blue grass was not observed within the MDS Rail Loop Project area.

It should be noted that King blue-grass was detected by SLR Consulting Australia Pty Ltd (SLR) within the MDS Rail Loop Project area in June and July of 2019 (SLR 2019b). It is likely that king blue-grass was not detectable during the 2021 post-wet season surveys and may still be present. Further targeted searches for king blue-grass will be conducted during the 2021/22 monitoring period.

4.3.6 Weed monitoring

Weed surveys were undertaken as part of the dry season surveys in November 2020 at five permanent weed monitoring plots (Figure 5). These surveys, while within year 2 of management of the MDS Rail Loop project area, are representative of the baseline surveys given they are the first of the dry season weed monitoring surveys at the site.

A total of eight weed species were identified from the five weed monitoring plots at the MDS Rail Loop project area. No additional species of weeds were observed on the site outside of those identified within the weed monitoring plots. Across the five weed monitoring plots, the average number of weed species observed per plot was 5.6 species, ranging between four species (Site MDSRL05) and seven species (Site MDSRL04) with only one weed species (*Leucaena leucocephala*) encountered at a single site. Weed cover across the five weed monitoring plots averaged 8.3%; ranging between 2.9% (Site MDSRL05) and 14% (Site MDSRL02) (Table 6 and Figure 7).

The most encountered weeds were *Setaria incrassata* and *Physalis lanceifolia*, each recorded from all five sites (Table 11). However, while encountered at all sites, the average cover of *Physalis lanceifolia* across those five encountered sites averaged only 0.4%, whereas *Setaria incrassata* had the highest average cover of 5.4%. *Cenchrus ciliaris* was encountered at three of the five sites, but had the second highest average cover, averaging 2.1% cover across the three sites it was recorded from.

Table 6: Results of weed monitoring assessments at the MDS Rail Loop site.

Scientific name	Common name	Family name	Percentage cover of weed species from given site				# -:*		
			MDSRL01	MDSRL02	MDSRL03	MDSRL04	MDSRL05	# sites	Avg cover (%) ^a
Alternanthera pungens	Khaki weed	Amaranthaceae	0.1	0.1	0.2	0.5		4	0.2
Parthenium hysterophorus	Parthenium weed	Asteraceae	0.6		0.1	0.9		3	0.5
Leucaeana leucocephala	Leucaena	Fabaceae		0.1				1	0.1
Cenchrus ciliaris	Buffel grass	Poaceae	1.3	4.8		0.1		3	2.1
Melinis repens	Red natal grass	Poaceae	1.4		0.1	1.5	0.1	4	0.8
Setaria incrassata	Purple pigeon grass	Poaceae	2.6	8.5	7.4	6.9	1.7	5	5.4
Physalis lanceifolia	Gooseberry	Solanaceae	0.1	0.5	0.2	0.4	0.6	5	0.4
Verbena officinalis	Common verbena	Verbenaceae			0.2	0.1	0.5	3	0.3
	·	# species	6	5	6	7	4		
		Weed cover (%) ^b	6.0	14.0	8.2	10.4	2.9		

^a Avg cover (%) represents the average percentage cover of a given weed species across encountered sites.

^b Weed cover represents the sum of the average weed cover percentages of all weed species.

© CO2 Australia. All Rights Reserved 2021. CO2 Australia gives no warranty about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.

4.3.7 Biomass monitoring

Biomass monitoring at the MDS Rail Loop project site was undertaken during both the dry season and postwet season surveys of the 2020/2021 management period. Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring all four of the sites comprising RE 11.8.11 (Table 7). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 3,015 kg/ha and 3,850 kg/ha 'Downs country' photo standards was reported as 3,433 kg/ha).

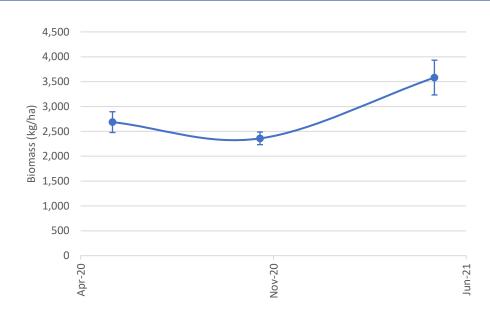

Biomass monitoring showed limited variability in biomass of ground cover within seasons across all four photo monitoring sites. During the dry season, there was a moderate biomass for the vegetation type, with a biomass ranging between 2,140 kg/ha and 2,578 kg/ha. During the post-wet season, biomass was higher than the dry season surveys, ranging from 3,015 and 4,445, indicating that biomass within these RE 11.8.11 sites is a function of seasonality. Post-wet season biomass in 2021 was also higher than those recorded in the same season of 2020, likely due to greater rainfall in the months leading up to the 2021 post-wet season surveys. Results of biomass surveys are presented in Table 7 and represented graphically in Figure 8.

Table 7: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture photo standards

		Brigalow Belt Future Beef pasture photo standard type			
Photo monitoring site*	RE type	Downs country	2020 post-wet season biomass kg/ha	2020 dry season biomass kg/ha	2021 post-wet season biomass kg/ha
MDSRL01	11.8.11	\checkmark	3,015	2,578	3,850
MDSRL02	11.8.11	\checkmark	2,578	2,140	3,015
MDSRL03	11.8.11	\checkmark	2,140	2,140	3,015
MDSRL04	11.8.11	\checkmark	3,015	2,578	4,445

* taken from the 50 m point of the permanent habitat monitoring transect.

Figure 8: Graphical representation of the change in biomass at the MDS Rail Loop project site between June 2020 and May 2021.

4.3.8 Dust Monitoring

As per the Rail Loop MNESMP, two dust monitoring gauges have been installed at the MDS Rail Loop site. Dust levels at the dust gauges have been monitored in accordance with the *Australian Standard AS3580.10.1 Methods for sampling and analysis of ambient air – Determination of particulate matter – Deposited Matter – Gravimetric method.*

The results from the dust deposition monitoring at the two dust monitoring gauges for the reporting period are presented in Table 8.

The performance criteria relating to dust deposition in the Rail Loop MNESMP requires that dust deposition not exceed 120 mg/m²/day, averaged over one month when measured at any sensitive or commercial place. Results of the dust monitoring from the 2020/21 reporting period identified a number of the sites exceeding 120 mg/m²/day (see bold figures in Table 8), however none of the dust monitoring sites are located at a sensitive receptor as defined under the Project's EA.

Additionally, no evidence of dust or other particulate material on the vegetation within the MDS Rail Loop Project site was observed during the general site inspections (Section 4.3.2).

		Total Solids	(g/m²/month)					
Site	MNES habitat represented by the site	2 March 2020 to 2 April 2020	2 April 2020 to 30 April 2020	30 April 2020 to 28 May 2020	28 May 2020 to 23 June 2020	23 June 2020 to 13 July 2020	10 August 2020 to 10 September 2020	18 November 2020 to 18 December 2020	22 March 2021 to 19 April 2021
DMS7	Natural grassland TEC and king blue- grass habitat	167	170	147	143	213	63	153	37
DMS8	Natural grassland TEC and king blue- grass habitat	350	117	186	120	147	30	120	37

Table 8: Results of dust monitoring during the 2020/21 reporting period

5 ADHERENCE TO PERFORMANCE CRITERIA

Table 9 provides an assessment of the adherence to the performance criteria set out in the Rail Loop MNESMP. It also includes details of any corrective actions that have been undertaken, or will be undertaken, based on the monitoring results obtained during the reporting period.

Table 9: Adherence to performance criteria

Management objective	Success metric	Adherence to success metric	Corrective action
Avoid and minimise loss of natural grasslands on and King blue-grass habitat around the project site.	Grassland habitat outside the proposed disturbance footprint is maintained, with no clearing occurring as a result of the project.	As outlined in Section 4.3.1, no clearing has occurred outside of the project footprint as defined in the Rail Loop MNESMP. The maximum area of Natural Grassland TEC and king blue- grass habitat permitted to be disturbed under the EPBC Act approval has been cleared for the MDS Rail Loop Project.	No corrective action required.
Avoid and minimise loss of natural grasslands on and King blue-grass habitat around the project site.	Rehabilitation of disturbed areas in the project site no longer required for operation of the rail facility.	As detailed in Section 4.2.6, no rehabilitation activities have been undertaken within the MDS Rail Loop project area.	No corrective action required.
Prevent the decline of TEC and King blue- grass habitat quality in the Project management area.	Habitat quality is maintained or increased according to diagnostic conditions for natural grasslands (TSSC 2009).	As detailed in Section 4.3.3, habitat quality assessments were completed as part of the 2021 post-wet season surveys. Results of the habitat quality assessments indicate that the habitat condition scores for both Natural Grasslands TEC and King blue-grass decreased from the baseline surveys undertaken in June 2020.	Corrective action required In accordance with the Rail Loop MNESMP, the following corrective actions are recommended to be undertaken. Given the likelihood that the reduced habitat quality score is attributable to an increase in weed cover, it is suggested that the frequency and intensity weed control measures is reviewed, as well as the type of measures to be implemented. Weed monitoring assessments will be undertaken in the 2021/22 monitoring period which will also inform the change in weed species abundance and distribution.

Management objective	Success metric	Adherence to success metric	Corrective action
Minimise the impacts of weeds on TEC and King blue-grass conditionsNo new weed species are established 		As detailed in Section 4.3.6, baseline weed surveys were completed in June 2020 and November 2020; both considered baseline weed assessments from which the results of future weed surveys will be compared against. Notwithstanding, a reduction in habitat quality scores for Natural Grasslands TEC and King blue-grass is understood to be partly attributable to an increase in weed cover. Accordingly, it is suggested that the frequency and intensity of weed control measures is reviewed, as well as the type of measures to be implemented.	No corrective action required at this stage.
Avoid and minimise the loss of King blue- grass within the management area of the project site.	Population size/density/ of King blue-grass is stable or increased.	As detailed in Section 4.3.3, no King blue-grass were positively identified from the four habitat condition sites. It is likely that King blue-grass was not detectable during the 2021 post-wet season surveys and may still be present. Further targeted searches for king blue-grass will be conducted during the 2022 annual monitoring surveys to confirm its presence.	No corrective action required.
Minimise the impact of dust on surrounding natural grasslands and King blue-grass.	Population size/density of King blue- grass and natural grasslands is stable or increased.	There was no evidence to suggest dust was causing any issues to Natural Grassland TEC or King blue-grass populations during the November 2020 and May 2021 survey events.	No corrective action required.
 Avoid and minimise the negative impact of fire on the grassland TEC and habitat for King blue- grass. No unplanned fires on the site. If required, planned controlled burns in Natural Grasslands TEC and King blue-grass habitat) occur: in no more than 30% of the area; at an interval greater than 5 years; at a time of year when soil moisture is high (Late wet to early dry season or following good spring rains). 		No uncontrolled fires occurred on the MDS Rail Loop Project site during the 2020/2021 reporting period. No planned controlled burns have been implemented to date. Appropriate firefighting equipment was made available and all personnel and contractors were provided with training.	No corrective action required.

6 POTENTIAL THREATS AND RISKS

Vegetation clearing works, weed introduction and extensive heavy machinery pose the greatest risk to MNES and their habitat in the MDS Rail Loop Project site. To mitigate this risk, the measures outlined in the Rail Loop MNESMP will be adhered to, including the implementation of contingency plans and corrective actions where required. Ongoing management and monitoring activities will provide an indication of the efficacy of management actions in achieving the performance criteria set out in the Rail Loop MNESMP.

Given the end of construction works, the risk from vegetation clearing, weed introduction and heavy machinery is minimised. Instead, it is imperative to ensure the exclusion of vehicles outside of formed access tracks.

7 AMENDMENTS TO RAIL LOOP MNESMP

No amendments to the Rail Loop MNESMP are required to be made at this point in time.

8 MANAGEMENT, MONITORING AND REPORTING SCHEDULE – 2021/2022

To guide management, monitoring and reporting activities for the 2021/2022 reporting period, Table 10 outlines a schedule of the management, monitoring and reporting activities to be undertaken as part of the Rail Loop MNESMP.

Table 10: Management, mitigation, monitoring and reporting activities for the 2021/2022 reporting period

				20	21					20	22		
Action	Timing	July	August	September	October	November	December	lanuary	February	March	April	May	June
Management and mitigation measures													
Effectively manage site works and ongoing project activities so that clearing outside of the Project footprint will not occur.	During construction and operations												
The extent of the project footprint will be clearly marked out prior to clearing.	Prior to vegetation clearing works												
All site clearing can only be undertaken in accordance with the authorised permit to disturb.	During construction and operations	-											
Environmental awareness training will be provided to all workers as part of site induction, including specific topics on MNES, risks and protective measures.	Prior to vegetation clearing works	-					At all	times	5				
Rehabilitation will establish self-sustaining natural grassland habitat.	After construction and clearing operations.												
Erect suitable fencing to exclude unauthorised vehicles or grazing stock from management area.	During construction and operations	-											
Early installation of Erosion & sediment controls (ESCs) as works progress, and permanent ESC around fill and coal stockpiles.	During construction and operations												

				20)21					20)22		
Action	Timing	luly	August	September	October	November	December	January	February	March	April	May	une
Implementation of dust suppression techniques.	During construction and operations												
Manage fire regimes	During construction and operations												
Manage weeds in accordance with the Meteor Downs South Weed and Pest Management Plan (Sojitz, 2018).	During construction and operations												
Environmental awareness training will be provided to all workers as part of site induction, including weed hygiene and awareness.	Prior to construction and clearing operations.												
Undertake targeted weed control measures in accordance with the weed management plan, using an integrated program including selective herbicides, fire management and stock exclusion to maintain competitive natural grasslands.	During construction and operations												
Water truck will be on site during construction for dust suppression	During construction and operations												
Ground and vegetation disturbance to be limited to the necessary project footprint.	During construction and operations												
Stockpiles of topsoil, subsoil and parent material will be kept in a tidy condition and reused or stabilised as soon as practical.	During construction and operations												
Speed limits on internal roads will be limited to a maximum 40 km/hr.	During construction and operations												

				20	21					20)22		
Action	Timing	luly	August	September	October	November	December	lanuary	February	March	April	May	lune
Build and maintain fire breaks for asset protection.													
Fire management of the site will consider:	During construction and												
 Protection and operation of the rail facility through risk assessment; appropriate fire management regimes (frequency, timing, extent) for the grasslands; 	operations												
 management impacts and implications (positive or negative) on weed management. 													
Monitoring													
General site inspections	Biannually – once at the end of the wet season and once at the end of the dry season					✓					~		
Habitat quality assessments & photo monitoring	Annually, post-wet										~		
Targeted surveys for King blue-grass	Annually, post-wet										~		
Weed monitoring	Every two years (biennially) at the end of the wet season and dry season					✓					~		
Biomass monitoring	Biannually - at the end of each wet season and dry season					✓					~		
Dust deposition monitoring	Monthly during construction phase and quarterly during operational phase			~			~			~			~

			2021					2022					
Action	Timing	yılı	August	September	October	November	December	January	February	March	April	May	June
Rehabilitation Monitoring	Annually, at the end of the wet season after rehabilitation works are finished										~		
Reporting													
Review of the Rail Loop MNESMP	Annually	~											
Annual report	Annually, required to be submitted to DAWE by the 30 June										✓		

9 REFERENCES

CO2 Australia (2021). *Post-wet Season Monitoring Report (2020/21)*. A report prepared for Sojitz Blue Mining Pty Ltd. CO2 Australia Limited, Brisbane.

SLR Consulting Australia Pty Ltd (SLR)(2019a). *Matters of National Environmental Significance Management Plan – Meteor Downs South Rail Loop Project*. A report prepared for Sojitz Coal Mining Pty Ltd. SLR Consulting Australia Pty Ltd, Townsville.

SLR Consulting Australia Pty Ltd (SLR)(2019b). *Preliminary Documentation Report Referral #2019-8482*. A report prepared for Sojitz Coal Mining Pty Ltd. SLR Consulting Australia Pty Ltd, Townsville.

Sojitz Coal Mining Pty Ltd (Sojitz)(2018). *Meteor Downs South Mine Weed and Pest Management Plan*. Sojitz Coal Mining Pty Ltd, Springsure.

APPENDIX A DRY SEASON MONITORING REPORT (2020/21) (CO2 AUSTRALIA 2020)

Dry Season Monitoring Report (2020/21)

Australian Carbon Industry Code of Conduct

Year 4

- MDS Project site
- Lexington offset site
- Year 1
 - MDS Rail Loop site
 - Lexington Rail Loop offset site

Meteor Downs South Coal Mine Project

Sojitz Blue Pty Ltd

APPROVALS

Rev	Date	Description
0	16 December 2020	Draft report issued to client
1	14 January 2021	Report finalised based on client review and issued to client

	Name	Position	Date
ORIGINATORS	Dr Jarrad Cousin Dean Orrick	Senior Ecologist Ecologist	16 December 2020
APPROVER	Christopher Ewing	Head of Ecosystem Markets and Innovation	16 December 2020

Commercial in Confidence

This document is provided expressly subject to the terms of PO 20076 between CO2 Australia and the Client dated 20 October 2020 ('Engagement Agreement'). This advice is for the sole benefit of the Client. The information and opinions contained in this document are strictly confidential. Accordingly, the contents of this document or opinions subsequently supplied will constitute confidential information and may not, without the written consent of CO2 Australia, be published, reproduced, copied or disclosed to any person (other than your advisors having a need to know and who are aware that it is confidential), nor used for any purpose other than in connection with its intended use.

Disclaimer

The information in this document has not been independently verified as to its accuracy or completeness. This document is based on the information available at the time of preparation as well as certain assumptions. No representation or warranty, express or implied, is given by CO2 Australia or any of its directors, officers, affiliates, employees, advisers or agents (and any warranty expressed or implied by statute is hereby excluded (to the extent permitted by law)) as to the accuracy or completeness of the contents of this document or any other information supplied, or which may be supplied at any time or any opinions or projections expressed herein or therein, nor is any such party under any obligation to update this document or correct any inaccuracies or omissions in it which may exist or become apparent.

To the extent permitted by law, CO2 Australia limits its liability in accordance with the terms of the Engagement Agreement. Subject to the terms of the Engagement Agreement, no responsibility or liability is accepted for any loss or damage howsoever arising that you may suffer as a result of this document or reliance on the contents of this document and any and all responsibility and liability is expressly disclaimed (to the extent permitted by law) by CO2 Australia and any of its respective directors, partners, officers, affiliates, employees, advisers or agents.

Marketing

If, in any document or other communication to be made public or disclosed to a government agency, the Client wishes to make reference to the use of CO2 Australia's services, CO2 Australia's consent must first be obtained, and this will not unreasonably be withheld.

Maps

The maps in this document are based on or contain data that has been provided by the State which gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data.

CONTENTS

1	Intr	roduction	1		
	1.1	MDS Project and corresponding offsets	1		
	1.2	MDS Rail Loop and corresponding offsets	2		
2	Me	thodology	5		
	2.1	Monitoring locations	5		
	2.2	Habitat condition assessment (MDS Project Site only)	18		
	2.3	Photo monitoring (MDS Project site only)	18		
	2.4	Weed monitoring (MDS Rail loop site and lexington rail loop site)	18		
	2.5	Biomass monitoring for fire management (All sites)	20		
	2.6	General site inspections (All sites)	20		
3	Res	sults: MDS Project site	21		
	3.1	Habitat condition assessment	21		
	3.2	Photo monitoring	23		
	3.3	Biomass monitoring	23		
	3.4	General site inspection	24		
4	Res	sults: MDS Rail Loop Site	25		
	4.1	Weed monitoring	25		
	4.2	Biomass monitoring	28		
	4.3	General site inspection	28		
5	Res	sults: Lexington offset site	29		
	5.1	Biomass monitoring	29		
	5.2	General site inspection	30		
6	Res	sults: Lexington Rail Loop offset site	32		
	6.1	Weed monitoring	32		
	6.2	Biomass monitoring	36		
	6.3	General site inspection	36		
7	Ref	erences	38		
Ар	pend i	ix A Monitoring site locations	A-1		
Ар	pendi	ix B MDS Project site Year 4 habitat condition assessment	B-1		
Ар	pendi	ix C MDS Project site photo monitoring	C-1		
Ар	pendi	ix D MDS Rail Loop site photo monitoring	D-1		
Appendix E Lexington offset site photo monitoring					
Ар	pendi	ix F Lexington Rail Loop offset site photo monitoring	F-1		

1 INTRODUCTION

U&D Mining Industry (Australia) Pty (U&D) has approval under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) to develop and operate the Meteor Downs South (MDS) Coal Mine Project (the MDS Project) (Figure 1). U&D is in a joint venture with Sojitz Blue Pty Ltd (Sojitz Blue) to develop and operate the MDS Project.

1.1 MDS PROJECT AND CORRESPONDING OFFSETS

Under the Project EPBC Act approval (EPBC 2013/6779), the MDS Project has prepared the following documents:

- Matters of National Environmental Significance Management Plan (MNESMP)
 - to address EPBC 2013/6779 conditions 2, 3 and 4 with respect to the direct and indirect impacts of the MDS Project on matters of national environmental significance (MNES) at the MDS Project site
- Offset Management Plan (OMP)
 - to address EPBC 2013/6779 conditions 5 and 6 with respect to environmental offsets at the Lexington offset site (Figure 1) for significant residual impacts of the MDS Project on MNES and matters of state environmental significance (MSES)

The MNESMP and OMP outline annual biodiversity monitoring requirements at each site, as summarised in Table 1. The baseline (Year 1) management periods for the MDS Project site and the Lexington offset site are considered to be June 2017 – June 2018 (Project site) and October 2017 – October 2018 (Lexington offset site).

The current report incorporates the Year 4 (2020/2021) dry season monitoring report for both the MDS Project site and the Lexington offset site.

Site	Monitoring activity	Management plan	Frequency	Timing
	General site inspection	MNESMP Section 13.2	Biannually	End of the dry season and end of the wet season
	Habitat condition assessment	MNESMP Section 13.3	Annually	Dry season
	Photo monitoring	MNESMP Section 13.4	Annually	
MDS Project site	Targeted surveys for king blue-grass and bluegrass	MNESMP Section 13.5	Annually	End of the wet season and/or when most detectable
	Habitat availability assessment for Australian painted snipe	MNESMP Section 13.6	Every 2 years	Wet season or following inundation event
	Pest animal monitoring	MNESMP Section 13.7	Every 2 years	Dry season and post-wet
	Weed monitoring	MNESMP Section 13.8	Every 2 years	season
Lexington offset site	General offset site monitoring	OMP Section 7.1	Annual	Post-wet season

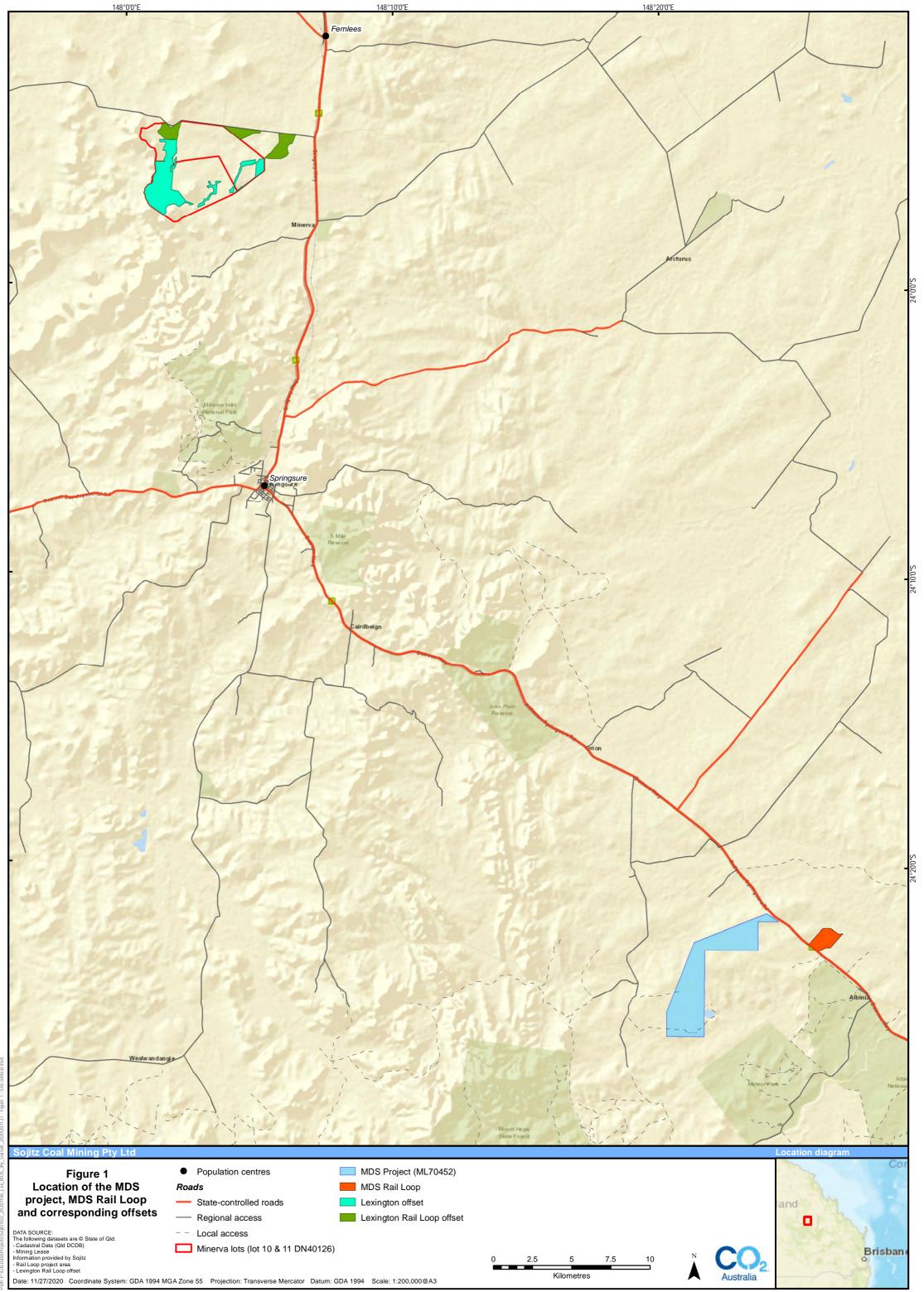
Table 1: Summary of MDS Project and offset site biodiversity monitoring requirements.

Site	Monitoring activity	Management plan	Frequency	Timing
	Habitat condition assessment and photo monitoring	OMP Section 7.2	Every 2 years for first 10 years and then every 5 years thereafter until 31 October 2037	Post-wet season
	Weed monitoring	OMP Section 7.4	Every 2 years	Dry season and post-wet season
	Pest animal monitoring	OMP Section 7.5	Every 2 years (dry season and post wet season surveys)	Dry season and post-wet season
	Biomass monitoring	OMP Section 7.6	Annually	Post wet season prior to and during grazing events

1.2 MDS RAIL LOOP AND CORRESPONDING OFFSETS

In December 2019, Sojitz Blue received approval under the EPBC Act to develop and operate the Meteor Downs South Mine Rail Loop (MDS Rail Loop). Under the Project EPBC Act approval (EPBC 2019/8482), Sojitz Blue has prepared the following documents:

- Matters of National Environmental Significance Management Plan (Rail Loop MNESMP)
 - to address EPBC 2019/8482 condition 6 with respect to the direct and indirect impacts of the MDS Rail Loop project on matters of national environmental significance (MNES) at the MDS Rail Loop site
- Offset Management Plan (amendment to the OMP to incorporate the Rail Loop offsets)
 - to address EPBC 2019/8482 conditions 2, 3, 4 and 5 with respect to environmental offsets at the Lexington Rail Loop offset site (Figure 1) for significant residual impacts of the MDS Rail Loop on MNES.


The Rail Loop MNESMP and OMP outline annual biodiversity monitoring requirements at each site, as summarised in Table 2. The baseline management periods for the MDS Rail Loop site and the corresponding Lexington Rail Loop offset site are considered to be December 2019 - June 2020, with the current report incorporating the Year 1 (2020/2021) dry season monitoring report for both the MDS Rail Loop site and the Lexington Rail Loop offset site.

Site	Monitoring activity	Management plan	Frequency	Timing
	General site inspection	Rail Loop MNESMP Section 7.2	Biannually	End of the dry season and end of the wet season
MDS Rail Loop site	Habitat quality assessments and photo monitoring	Rail Loop MNESMP Section 7.3	Annually	Post-wet season
	Targeted surveys for king blue-grass	Rail Loop MNESMP Section 7.4	Annually	

Table 2: Summary of MDS Rail Loop site and Lexington Rail Loop offset site biodiversity monitoring requirements.

Site	Monitoring activity	Management plan	Frequency	Timing
	Weed monitoring	Rail Loop MNESMP Section 7.5	Biannually within habitat quality assessment plots Every 2 years at each of the weed monitoring plots	End of the dry season and post- wet season
	Biomass monitoring for fire management	Rail Loop MNESMP Section 7.6	Biannually	End of the dry season and end of the wet season
	General offset site monitoring	OMP Section 7.1	Annually	Post-wet season
	Habitat condition assessment and photo monitoring	OMP Section 7.2	Every 2 years for first 10 years and then every 5 years thereafter until 31 October 2039	Post-wet season
Lexington Rail Loop offset site	King blue-grass surveys	OMP Section 7.3	Every 5 years from baseline (2019)	End of the wet season and/or when most detectable
	Weed monitoring	OMP Section 7.4	Baseline in 2020 (Year 1), then every 2 years	Dry season and post-wet season
	Biomass monitoring	OMP Section 7.6	Annually	Post wet season prior to and during grazing events

© CO2 Australia. All Rights Reserved 2020. CO2 Australia gives no warranty about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.

2 METHODOLOGY

Field surveys were undertaken by two tertiary-qualified ecologists (Dr Jarrad Cousin and Dean Orrick) between 16-20 November 2020. Permanent monitoring sites were established at the MDS Project site and Lexington offset site as part of the baseline surveys carried out between December 2017 and April 2018, detailed in the following:

- MNESMP Baseline Monitoring Report Meteor Downs South Coal Mine Project. A report prepared by CO2 Australia in 2017 (CO2 Australia 2017) – baseline monitoring sites established in December 2017
- Lexington Offset Area Initial Baseline Monitoring Report Meteor Downs South. A report prepared by CO2 Australia in 2018 (CO2 Australia 2018) – baseline monitoring sites established in April 2018.

Permanent monitoring sites for the MDS Rail Loop site and the Lexington Rail Loop offset site were established as part of baseline surveys carried out during post-wet season field surveys in June/July 2020, and detailed in the following report:

Post-wet Season Monitoring Report – Year 3 (2019/20). A report prepared by CO2 Australia in 2020 (CO2 Australia 2020) – baseline monitoring sites established in June/July 2020.

2.1 MONITORING LOCATIONS

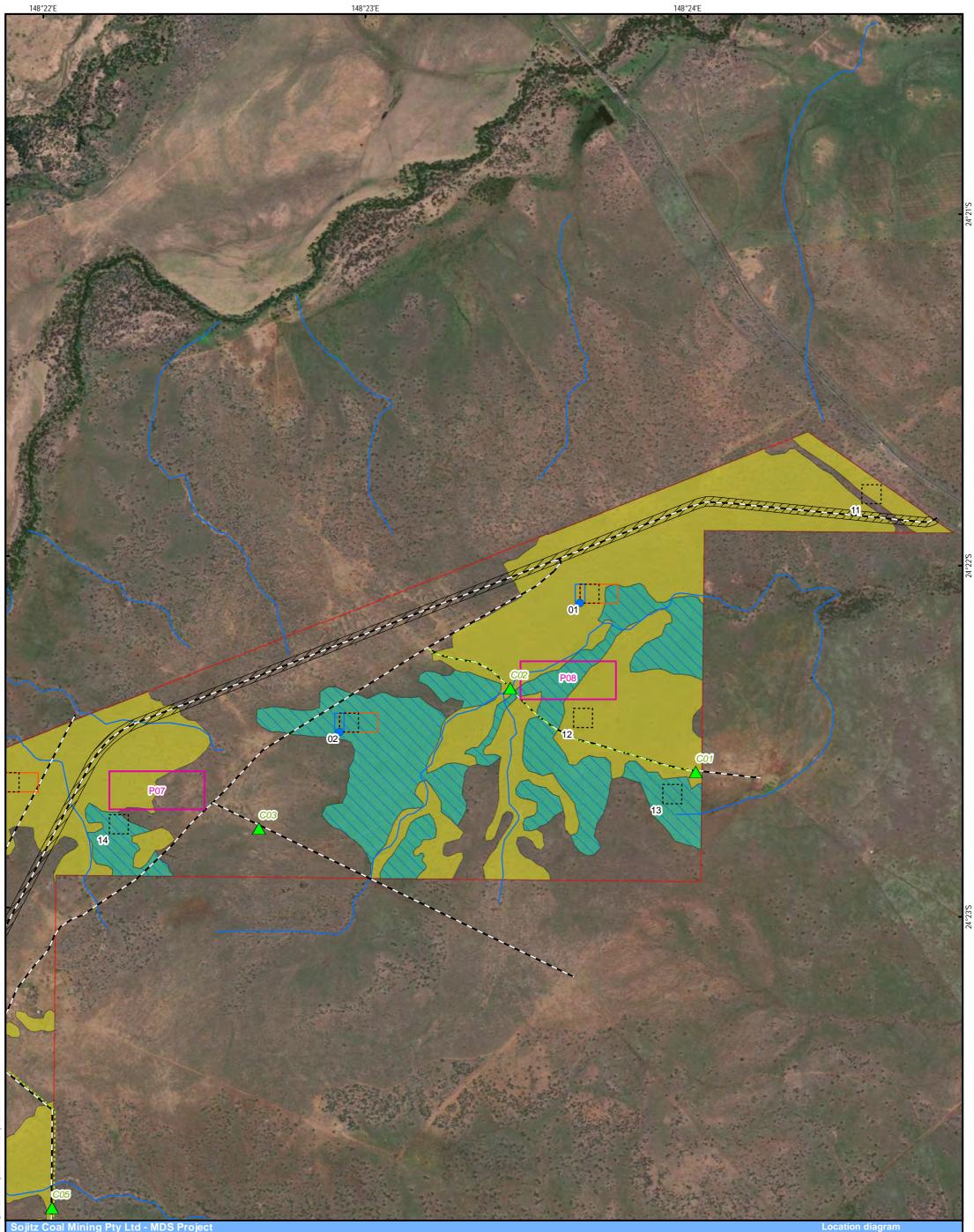
2.1.1 MDS Project site

Dry season monitoring activities at the MDS Project site comprised:

- General site inspection
- Habitat condition assessments
- Photo monitoring
- Biomass monitoring

Table 3 shows activities at each monitoring location at the MDS Project site. A total of 20 permanent sites/plots were monitored across the balance of ML70452 outside of the MDS project site (refer to Figure 2 and Figure 3). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 3), according to the following:

- 10 x habitat monitoring sites (100 m x 50 m)
 - collocated with weed and rabbit monitoring plots (Sites 01 10)
- 30 x photo monitoring sites
 - established at 0 m and 50 m points along 100 m habitat monitoring transect (Sites 01 10) and at SW corner of weed monitoring plots (Sites 11 – 20)
- 20 x weed monitoring plots (1 ha)
 - partly collocated with weed and rabbit monitoring plots (Sites 01 10), with remaining 10 sites
 (Sites 11 20) standalone weed monitoring plots


At each of the 10 habitat monitoring sites (Sites 01 - 10), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m transect. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection. At each of the standalone weed monitoring plots (Sites 11 - 20), a single 1.8 m capped galvanised star picket is installed at the SW corner of the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.

Refer to Table A-1 in Appendix A for detailed locations of each of the monitoring sites at the MDS Project site.

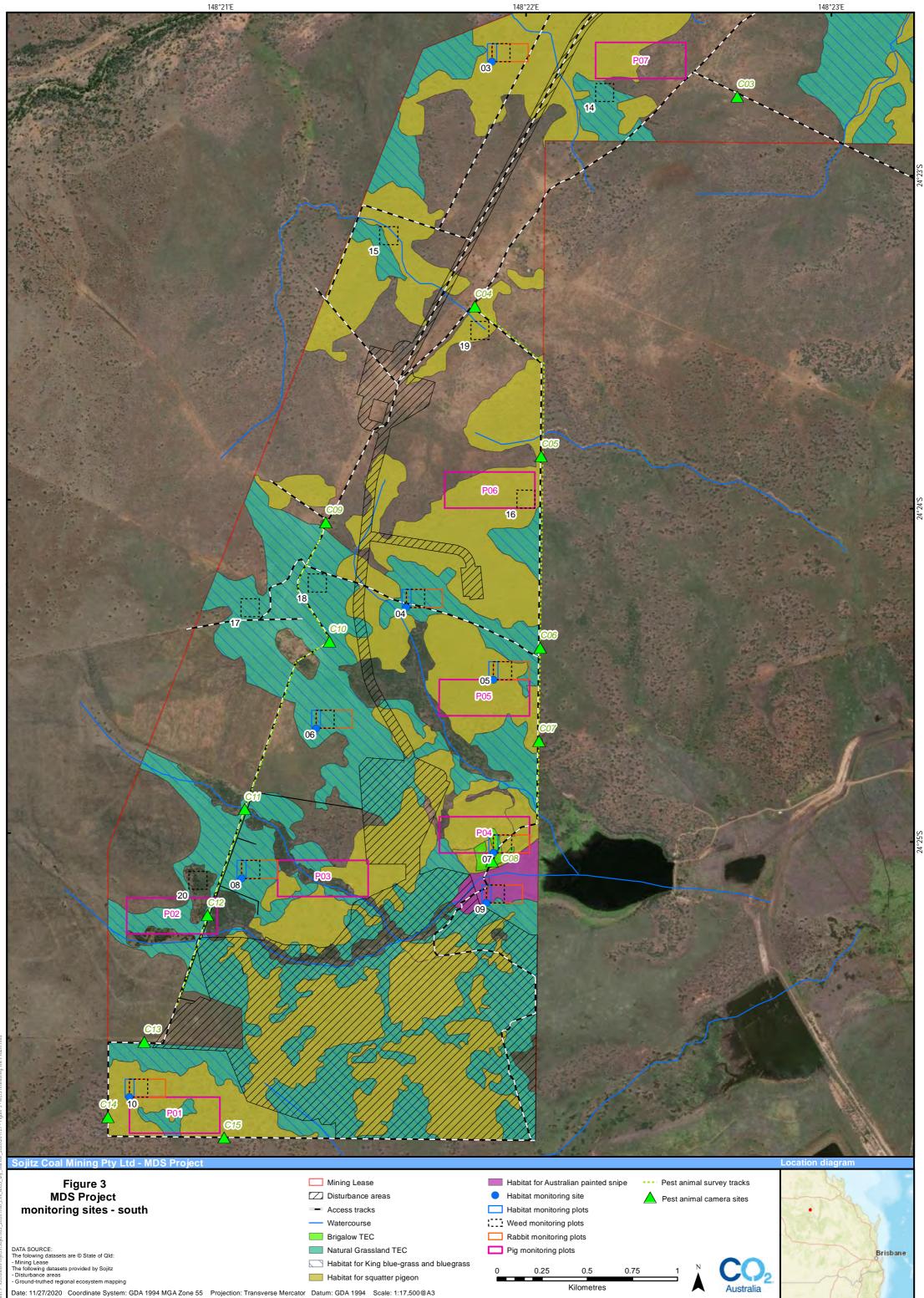

			Habitat mo	onitoring				
Site	Photo monitoring	Biomass monitoring	Brigalow TEC	Natural Grasslands TEC	King blue-grass	Bluegrass	Squatter pigeon	Australian painted snipe
01	\checkmark	\checkmark					✓	
02	✓	✓		✓	✓	✓		
03	✓	✓					~	
04	✓	~		✓	~	✓		
05	✓	✓					~	
06	✓	✓		✓	~	~		
07	✓	✓	~					
08	~	~		✓	~	~		
09	~	~						✓
10	~	~					~	
11 – 20	~	~						

Table 3: Monitoring locations at the MDS Project site, surveyed as part of the 2020/21 dry season surveys

Sojitz Coal Mining Pty Ltd - MDS Project

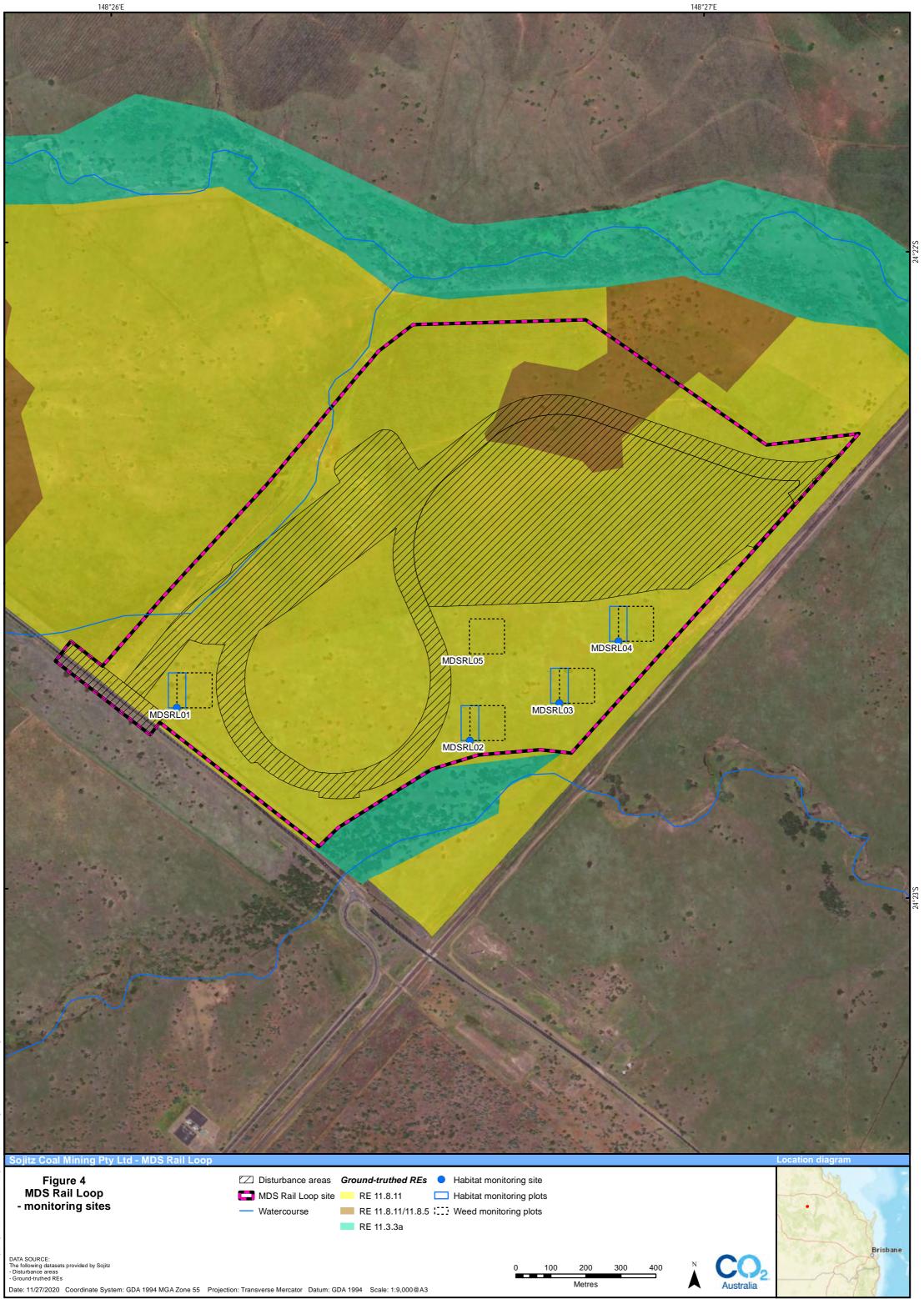
Figure 2 MDS Project monitoring sites - north	 Mining Lease Disturbance areas Access tracks Watercourse Brigalow TEC 	 Habitat for Australian painted snipe Habitat monitoring site Habitat monitoring plots Weed monitoring plots Rabbit monitoring plots 	
DATA SOURCE: The folowing datasets are © State of Qld: - Mining Lease The following datasets provided by Sojitz - Disturbance areas - Ground-truthed regional ecosystem mapping Date: 11/27/2020 Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercato	Natural Grassland TEC Habitat for King blue-grass and bluegrass Habitat for squatter pigeon Datum: GDA 1994 Scale: 1:17,500@A3	Pig monitoring plots 0 0.25 0.5 0.75 1 Kilometres	Q2 tralia

2.1.2 MDS Rail Loop site

Dry season monitoring activities at the MDS Rail Loop site comprised:

- General site inspection
- Biomass monitoring
- Weed monitoring

Table 4 shows activities at each monitoring location established at the MDS Rail Loop site. A total of five permanent monitoring sites/plots were monitored (refer to Figure 4). While the Rail Loop MNESMP (SLR 2019) stipulated one of the weed monitoring plots to be established in the *Leucaena* plantation, consultation with Sojitz Blue indicated the safety issues related to monitoring sites within the centre of the rail loop requiring crossing of the rail line. Instead, all plots were established on the outside of the rail loop (refer to Figure 4). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 4), according to the following:


- 4 x biomass monitoring sites
 - assessed from the 50 m point of the habitat monitoring transect at each of the four habitat monitoring sites (Sites MDSRL01 – MDSRL04),
- 5 x weed monitoring plots (1 ha)
 - collocated with the habitat monitoring sites (Sites MDSRL01 MDSRL04), with a single standalone weed monitoring plot (Site MDSRL05)

At each of the 4 biomass monitoring sites (Sites MDSRL01 – MDSRL04), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m habitat monitoring transect. At the single standalone weed monitoring plots (Site MDSRL05), a single 1.8 m capped galvanised star picket is installed at the SW corner of the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.

Refer to Table A-2 in Appendix A for detailed locations of each of the monitoring locations at the MDS Rail Loop site.

Site	Weed monitoring	Biomass monitoring
MDSRL01 – MDSRL04	\checkmark	\checkmark
MDSRL05	✓	

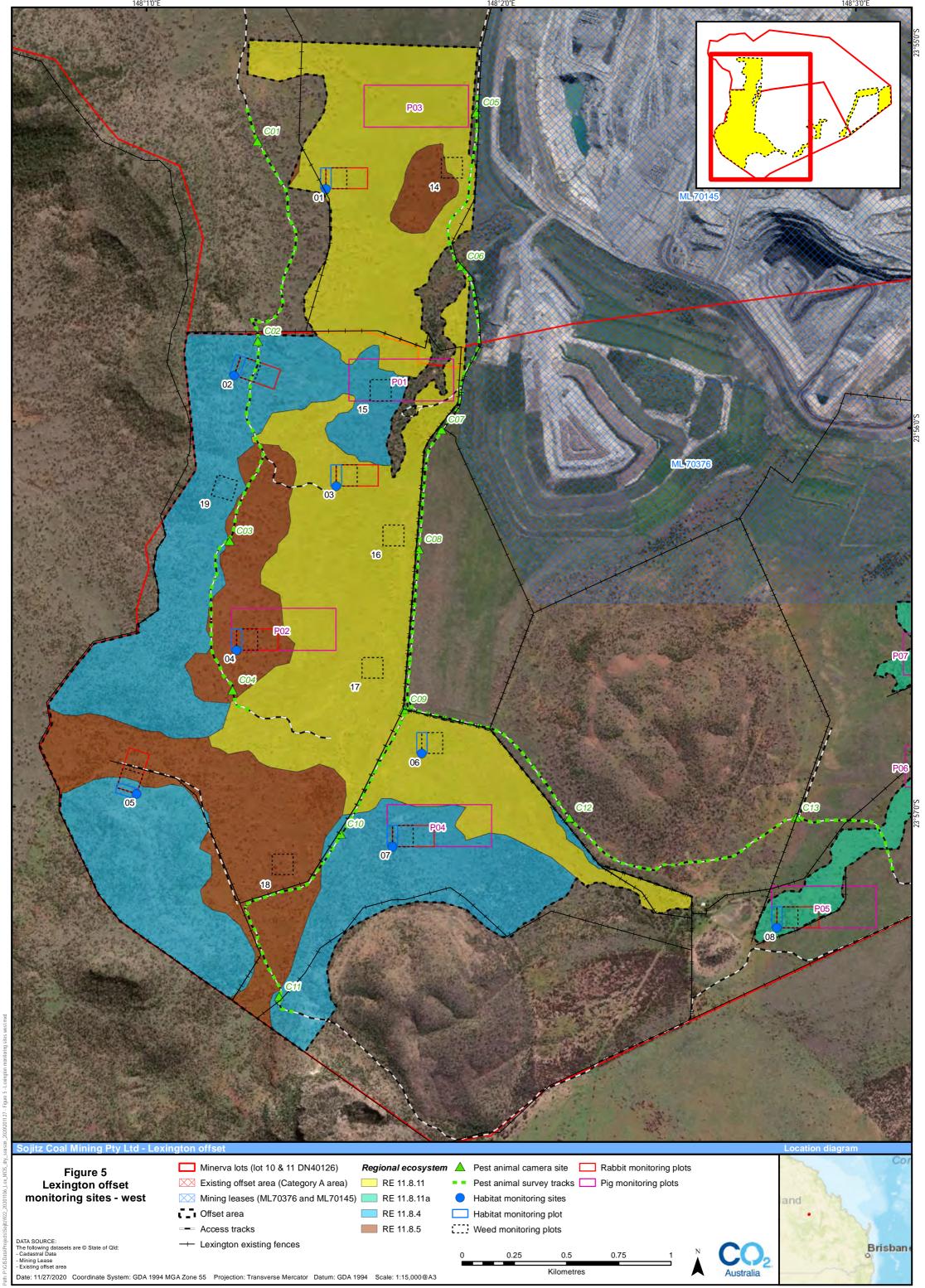
Table 4: Monitoring locations at the MDS Rail Loop site, surveyed as part of the 2020/21 dry season surveys.

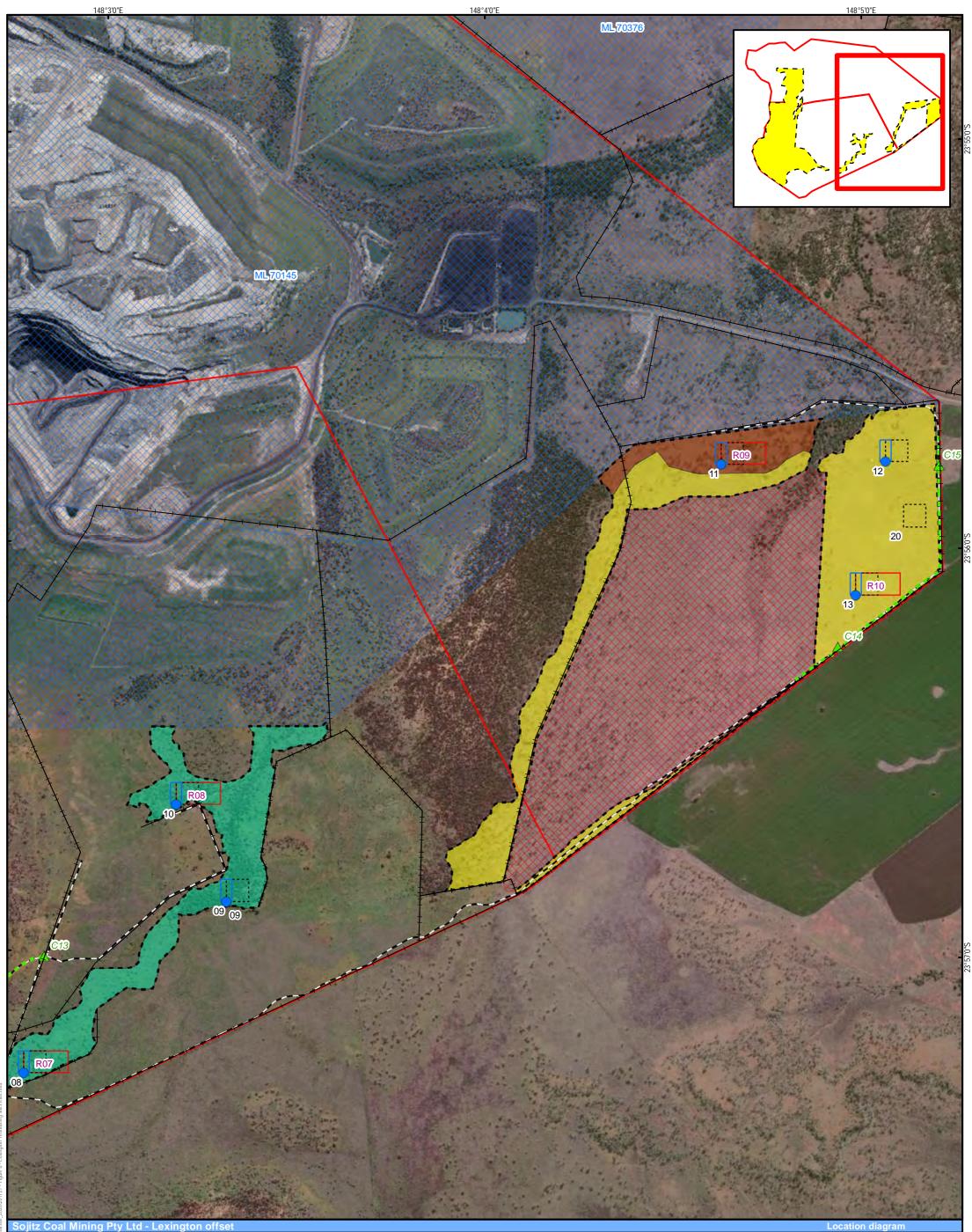
2.1.3 Lexington offset site

Dry season monitoring activities at the offset site comprised:

- General offset site monitoring
- Biomass monitoring

Table 5 shows activities at each monitoring location at the offset site. A total of 20 permanent monitoring sites/plots were monitored across the offset site. Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 5, Figure 5 and Figure 6), according to the following:


- > 20 x biomass monitoring sites
 - 13 established at the 0 m point along the 100 m habitat monitoring transects (Sites 01 13)
 - 7 at SW corner of weed monitoring plots (Sites 14 20)


At each of the 13 habitat monitoring sites (Sites 01 - 13), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m transect. At each of the standalone weed monitoring plots (Sites 14 - 20), a single 1.8 m capped galvanised star picket is installed at the SW corner of the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.

Refer to Table A-3 in Appendix A for detailed locations of each of the monitoring sites at the Lexington offset site.

Table 5: Monitoring locations at the Lexington offset site, surveyed as part of the 2020/21 dry season surveys.

Sojitz Coal Mining Pty Ltd - Lexington offset

2.1.4 Lexington Rail Loop offset site

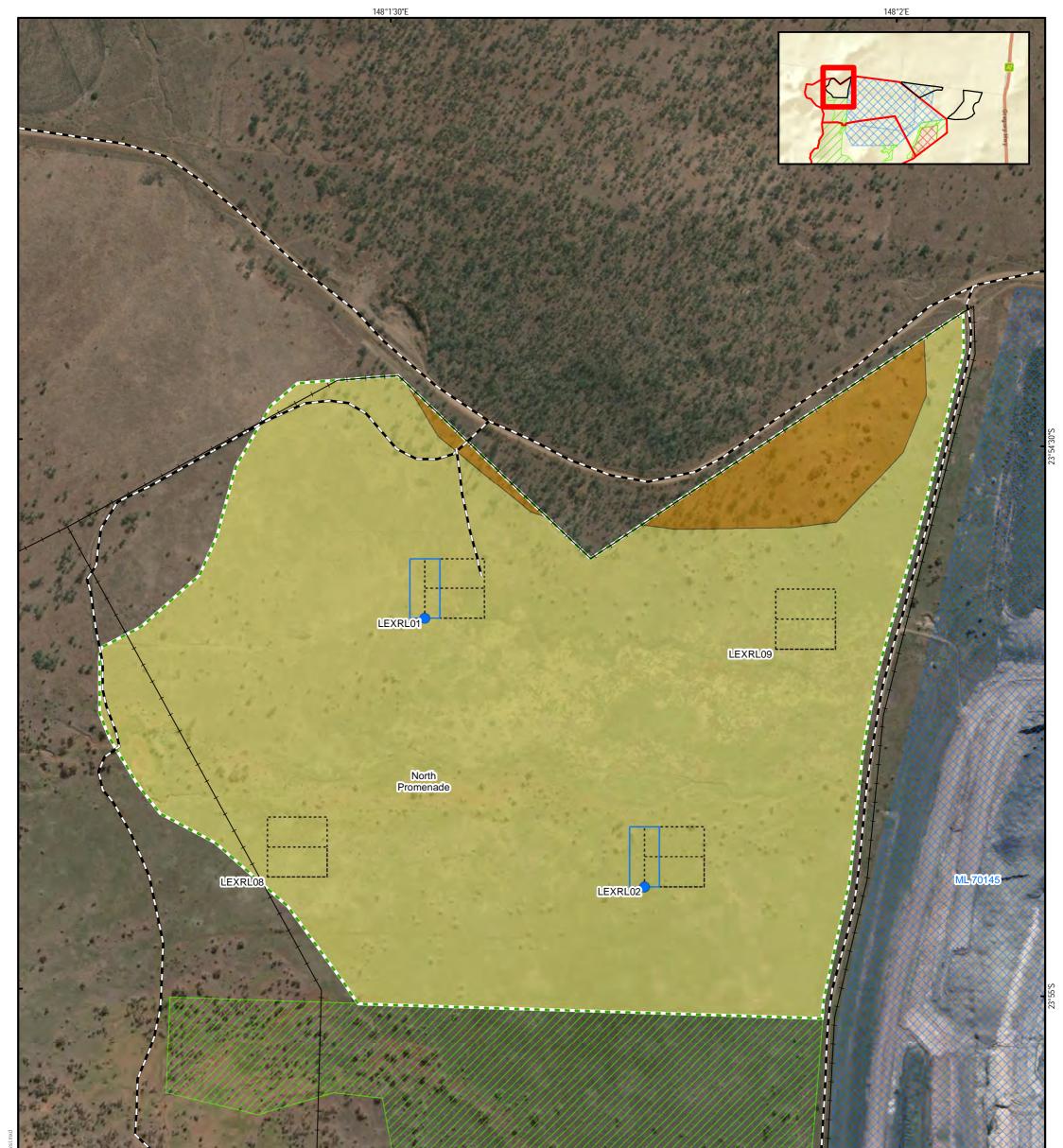
Dry season monitoring activities at the Lexington Rail Loop offset site comprised monitoring of the following:

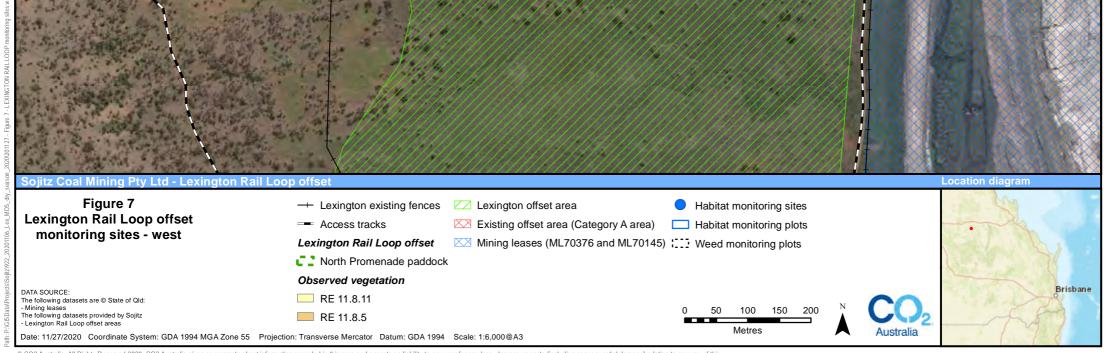
- General offset site monitoring
- Weed monitoring
- Biomass monitoring

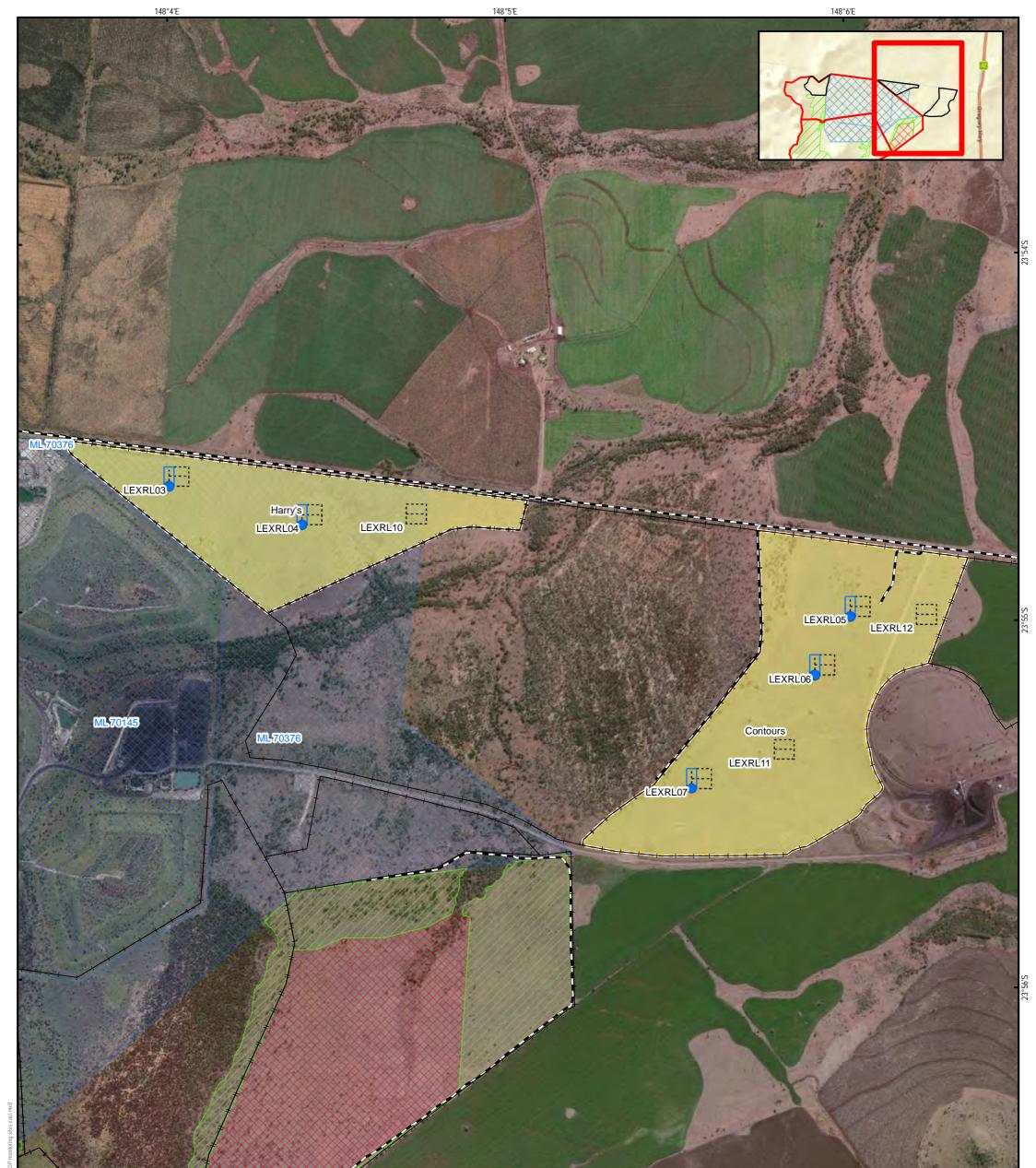
Table 6 shows activities at each monitoring location established at the Lexington Rail Loop offset site; divided into three 'paddocks' across the north of Lexington – 'North Promenade', 'Harry's' and 'Contours'. A total of 12 permanent monitoring sites/plots are monitored across the three paddocks (refer to Figure 7 and Figure 8). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 6), according to the following:

- 12 x weed monitoring plots (1 ha)
 - collocated with the seven habitat monitoring sites (Sites LEXRL01 LEXRL07)
 - five additional, standalone weed monitoring plots (Sites LEXRL08 LEXRL12)
- 12 x biomass monitoring plots
 - seven established at the 0 m point along the 100 m habitat monitoring transects (Sites LEXRL01 LEXRL07)
 - five at SW corner of standalone weed monitoring plots (Sites LEXRL08 LEXRL12).

At each of the seven habitat monitoring sites (Sites LEXRL01 – LEXRL07), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m transect. At each of the standalone weed monitoring plots (Sites LEXRL08 – LEXRL12), a single 1.8 m capped galvanised star picket is installed at the SW corner of the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.


Refer to Table A-4 in Appendix A for detailed locations of each of the monitoring sites at the Lexington Rail Loop offset site.


Table 6: Monitoring locations at the Lexington Rail Loop offset site, surveyed as part of the 2020/21 dry season
surveys.


Site	Weed monitoring	Biomass monitoring			
North Promenade paddoc	k				
LEXRLO1 – LEXRLO2	~	✓			
LEXRL08 – LEXRL09		\checkmark			
Harry's paddock					
LEXRL03 – LEXRL04	✓	✓			
LEXRL10		✓			
Contours paddock					

Site	Weed monitoring	Biomass monitoring
LEXRL05 – LEXRL07	\checkmark	\checkmark
LEXRL11 – LEXRL12		✓

Sojitz Coal Mining Pty Ltd - Lexington Rail	oop offset		Location diagram
Figure 8	Lexington existing fences 📿 Lexington offset area	Habitat monitoring sites	- Un
Lexington Rail Loop offset	- Access tracks Existing offset area (Category A and	rea) 🛛 Habitat monitoring plots	
monitoring sites - east	Lexington Rail Loop offset 🛛 Mining leases (ML70376 and ML7	70145) : Weed monitoring plots	
	Harry's paddock Observed vegetation		
	Contours paddock RE 11.8.11		Brisbane
DATA SOURCE: The following datasets are © State of Qld: - Mining leases The following datasets provided by Sojitz - Lexington Rail Loop offset areas	RE 11.8.5	0 200 400 600 800 N Metres	2
Date: 11/27/2020 Coordinate System: GDA 1994 MGA Zone 55 Pr	ection: Transverse Mercator Datum: GDA 1994 Scale: 1:17,500@A3	Metres Australia	

© CO2 Australia. All Rights Reserved 2020. CO2 Australia gives no warrantly about information recorded in this map and accepts no liability to any user for any loss, damage or costs (including consequential damage) relating to any use of this map, except as otherwise agreed between CO2 Australia and a user.

20\201127 - Figure 8 - LEXINGTON

2.2 HABITAT CONDITION ASSESSMENT (MDS PROJECT SITE ONLY)

Habitat monitoring sites were established at the MDS Project site in December 2017 based on the requirements of the *Guide to determining terrestrial habitat quality* (Version 1.2; DEHP 2017). A total of 10 habitat monitoring sites (comprising N_S running 100 m x 50 m transect) were established (Sites 01 - 10), with the start and central points marked with a 1.8 m galvanised steel picket with plastic safety cap (refer to Figure 2 and Figure 3).

Habitat condition assessments for Brigalow TEC, Natural Grasslands TEC, bluegrass, king blue-grass, squatter pigeon and Australian painted snipe were undertaken at the habitat monitoring sites generally in accordance with the *Guide to determining terrestrial habitat quality* (DEHP 2017). Through the application of the guide, a habitat quality score was calculated for each MNES based on the following key indicators:

- site condition: a general condition assessment of vegetation compared to a benchmark
- site context: an analysis of the site in relation to the surrounding environment

In the absence of the *Guide to determining terrestrial habitat quality* (DEHP 2017) including a species habitat index for flora species, the habitat condition scores for the two MNES flora species (king blue-grass and bluegrass) included a species presence index out of three, whereby: 0 = absent/not confirmed, 2 = up to five tussocks confirmed, 2.5 = up to 20 tussocks confirmed, 3 = more than 20 tussocks confirmed. The habitat condition score for the two MNES flora species was then calculated as a combination of site condition and site context for the RE assessment unit (representing 80% of the score), with species stocking rate converted to a score out of 10 and contributing 20%.

2.3 PHOTO MONITORING (MDS PROJECT SITE ONLY)

Photo monitoring was undertaken at permanent sites established as part of baseline surveys on the MDS Project site, to give a representative indication of cover and species composition (including weeds) for the general area and enable visual assessment of habitat changes over time. Photo monitoring sites were established with a 1.8 m galvanised steel picket with plastic safety cap.

At each of the photo monitoring points, five photos were taken from 1.5 m height above ground level looking north, east, south and west with a ground photo taken looking down at an angle of 45° to the northwest of the star picket.

At the MDS Project site, photo monitoring was undertaken at 30 sites, including two at each of the 10 habitat condition assessment sites (0 m and 50 m points: Site 01 - 10), with single photo monitoring points at the SW corner of the remaining 10 weed monitoring plots (Site 11 - 20) identified in Table 3 and shown in Figure 2 and Figure 3.

A record of the photographs for the MDS Project site is shown in Appendix C. While not required to be collected as part of the dry season surveys, photos monitoring was also undertaken at the MDS Rail Loop site (Appendix D), Lexington offset site (Appendix E) and Lexington Rail Loop offset site (Appendix F) primarily to collate information to inform the biomass assessment.

2.4 WEED MONITORING (MDS RAIL LOOP SITE AND LEXINGTON RAIL LOOP SITE)

For the purposes of this assessment, weeds were taken as any species of plant not considered by the Queensland Herbarium as being native to Queensland (i.e. not listed as either least concern, special least concern, near threatened, vulnerable, endangered, critically endangered or presumed extinct in the wild

under the *Nature Conservation Act 1992* (Qld); NC Act), as well as species of plant not considered locally endemic to the region.

Weed monitoring at the MDS Rail Loop site and Lexington Rail Loop offset site had previously been undertaken as part of the post-wet season baseline monitoring in June 2020. While dry season weed monitoring is only required to be undertaken every two years (i.e. not until the 2021/2022 monitoring year), it was undertaken as part of the current year 1 dry season monitoring report in order to fulfil the requirement for establishing baseline dry season weed monitoring which was not completed prior to the December 2019 EPBC approval. Following the current dry season survey, it is anticipated that 2 yearly monitoring will commence with the dry season survey of the 2021/2022 monitoring year (i.e. Nov/Dec 2021).

Weed monitoring was undertaken at five permanent plots established at the MDS Rail Loop site and 12 permanent plots established at the Lexington Rail Loop offset site. Weed monitoring plots were located to incorporate natural variability such as aspect (e.g. a mix of north-, east-, south- and west-facing monitoring sites) and community type, while also targeting trafficable areas (e.g. entry gates, creek crossings, stock watering points) to monitor potential introduction and/or irruptions of prohibited and restricted weed species. At each weed monitoring plot, 3 x 100 m transects (traversing in an east-west direction) were traversed, keeping them parallel to one another, 50 m apart.

Figure 4 shows the MDS Rail Loop site weed monitoring plots and Figure 7 and Figure 8 shows the Lexington Rail Loop offset site weed monitoring plots.

At each of the permanent weed monitoring plots, monitoring of weeds was undertaken in accordance with the following method:

- At 10 m intervals along each of the three transects, a 2 m x 2 m plot frame was used to record the presence, species and cover of weeds
- Weed cover at each 2 m x 2 m survey site was recorded as one of five cover classes: 1 = 0%; 2 = 0-5%; 3 = 6-25%; 4 = 26-50%; 5 = 51-100% (Auld 2009)
- An average cover score for each weed species for each 1 ha site was calculated
- The average cover score was then calculated as the average percentage from the 30 plots surveyed from the three 100 m transects
- > The mean cover score across all weed monitoring sites was then calculated.

For the purposes of the calculation of average percentage cover of weeds, each of the five weed cover classes (0-5) were converted to a quantitative weed cover value based on the average value of the range corresponding to that weed cover class, as outlined below:

- Weed cover class 1 (0%) retained a value of 0%
- Weed cover class 2 (0-5%) was converted to a value of 2.5%
- Weed cover class 3 (6-25%) was converted to a value of 15%
- Weed cover class 4 (26-50%) was converted to a value of 37.5%
- Weed cover class 5 (51-100%) was converted to a value of 75%.

In addition to permanent weed monitoring plots, where relevant, incidental observations were collated as part of general site monitoring, recording details of weeds (including location, species and extent) and areas of significant weed cover.

2.5 BIOMASS MONITORING FOR FIRE MANAGEMENT (ALL SITES)

Biomass monitoring for fire management is undertaken annually to determine the risk of fire and to inform fire management strategies. Biomass is at its greatest at the end of the wet season (around April) with fire risk greatest towards the end of the dry season (September/October). Biomass is monitored using appropriate photo standards¹ to determine dry matter yields and subsequently fuel loads. Biomass monitoring is undertaken at permanent weed monitoring sites at the MDS Project site, MDS Rail Loop site, Lexington offset site and Lexington Rail Loop offset site.

2.6 GENERAL SITE INSPECTIONS (ALL SITES)

General site inspections across all project and offset sites was undertaken, to assess:

- Observations of fencing condition, including any repair/upgrades
- > Access track conditions, including location of watercourse crossings, grids, erosion, etc
- Fire management, including assessment of existing firebreaks, access tracks and roads, fuel loads, and any recent burning activities
- Livestock management including assessment of signs of land degradation and over-grazing
- Erosion management, including assessment of the incidence of erosion, especially around permanent and semi-permanent water bodies or areas subject to inundation or waterlogging
- Incidental fauna observations, including presence, traces and/or abundance of pest animals
- Signs of dust deposition on vegetation located adjacent to the MDS Project and MDS Rail Loop footprints
- Locations of known king blue-grass and bluegrass specimens throughout all sites
- Any additional risks to fauna (i.e. evidence of vehicle strike)

¹ See https://futurebeef.com.au/knowledge-centre/pastures-forage-crops/pasture-photo-standards/

3 RESULTS: MDS PROJECT SITE

3.1 HABITAT CONDITION ASSESSMENT

Results of the habitat condition assessments identified an average site condition score of 7.29 out of 10 across all ten habitat monitoring sites, with scores ranging between 4.56 (Site 09) and 8.94 (Site 10). Table B-1 and Table B-2 of Appendix B outline details of the site condition assessments, summarised below in Table 7.

Table 7: MDS Project site habitat monitoring sites: site condition and site context scores calculated in accordance
with the Guide to determining terrestrial habitat quality (DEHP 2017).

Site	RE	Site condition score (/10)	Site context score (/10)
01	11.8.5	7.88	7.69
02	11.8.11	8.00	6.92
03	11.8.5	8.50	7.69
04	11.8.11	7.00	7.69
05	11.8.5	5.81	7.69
06	11.8.11	8.00	7.31
07	11.4.3	6.25	7.69
08	11.8.11	8.00	7.31
09	11.3.3a	4.56	7.69
10	11.8.5	8.94	7.69
Average score	2	7.29	7.54

MNES habitat condition assessments

Based on the results of the site condition, site context and relevant species habitat assessments, habitat condition scores for the six MNES ranged between 4.14 (Australian painted snipe) and 7.55 (Natural Grassland TEC) out of 10 (Table 8). The comparatively low score for Australian painted snipe habitat is in part attributable to the low site condition for RE 11.3.3a habitat (4.56), but also the low fauna species habitat index (1.6), reflecting an absence of appropriate foraging and shelter habitat for the species at the time of surveying. In contrast, Natural Grasslands TEC habitat had the highest habitat condition score (7.55), attributable in large part to low weed cover and high species richness for grasses at each of the contributing RE 11.8.11 sites.

Refer to Table B-1 of Appendix B for site condition raw data contributing to site condition score in Table B-2.

Site	RE	Brigalow TEC	Natural Grasslands TEC	King blue- grass	Bluegrass	Squatter pigeon	Australian painted snipe
01	11.8.5	-	-	-	-	7.24	-

Site	RE	Brigalow TEC	Natural Grasslands TEC	King blue- grass	Bluegrass	Squatter pigeon	Australian painted snipe
02	11.8.11	-	7.50	6.00	6.00	-	-
03	11.8.5	-	-	-	-	8.21	-
04	11.8.11	-	7.32	5.86	5.86	-	-
05	11.8.5	-	-	-	-	6.19	-
06	11.8.11	-	7.68	6.14	6.14	-	-
07	11.4.3	6.60	-	-	-	-	-
08	11.8.11	-	7.68	6.14	6.14	-	-
09	11.3.3a	-	-	-	-	-	4.14
10	11.8.5	-	-	-	-	8.43	-
	Average score	6.60	7.55	6.04	6.04	7.52	4.14

Natural Grasslands, king blue-grass and bluegrass habitat

As discussed above, areas of Natural Grasslands TEC, represented by RE 11.8.11, were all in very good condition, likely as a consequence of some evidence of rainfall in early November. Habitat condition scores for the four assessment sites ranged between 7.32 and 7.68. The four assessment sites supported six TEC indicator grass species (Table 9), ranging between three and six species per site. While additional species are likely to have been present, some individuals could not be identified to species level due to a lack of fertile material this early in the season.

Scientific name	Common nomo	Site	:		
Scientific name	Common name	02	04	06	08
Aristida latifolia	Feather-top wiregrass	\checkmark	~	~	
Aristida leptopoda	White speargrass	~	~	~	
Astrebla elymoides	Hoop mitchell grass				
Astrebla lappacea	Curly mitchell grass				
Astrebla squarrosa	Bull mitchell grass				
Bothriochloa erianthoides	Satin-top grass	✓	~	~	✓
Dichanthium queenslandicum	King blue-grass				
Dichanthium sericeum	Queensland bluegrass	~		~	✓
Eriochloa crebra	Cup grass				
Panicum decompositum	Native millet	✓	~	~	✓
Panicum queenslandicum	Yabila grass				
Paspalidium globoideum	Shot grass	✓		~	
Thellungia advena	Coolibah grass				

Scientific name	Common nome	Site			
Scientific name	Common name	02	04	06	08
	TOTAL	6	4	6	3

Squatter pigeon

Incidental searches for the squatter pigeon were conducted opportunistically from over 92 km of driving during the 3 days of field surveys on the MDS project site, during which no squatter pigeons were recorded. Further targeted surveys will be undertaken during the post-wet season survey when birds are more likely to be actively foraging for grass seed.

Australian painted snipe

No surveying was undertaken for Australian painted snipe during the dry season survey monitoring. Surveys will be next be undertaken during the wet season (defined as between 1 November in one year to 31 May in the following year), following a significant inundation event during the Year 5 (2021/2022) monitoring period.

3.2 PHOTO MONITORING

Photo monitoring on the MDS Project site showed a variety of levels of cover ranging from dense understorey (Site 15: Photo C-125 in Appendix C) through to relatively open areas with evidence of grazing (Site 20: Photo C-150 in Appendix C). Overall, the condition of habitat at photo monitoring sites was good, with appreciable grass cover in most sites, likely due to higher than average rainfall in October and November. The results of the photo monitoring are presented in Appendix C.

3.3 BIOMASS MONITORING

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring sites comprising RE 11.8.11, whilst photo monitoring results from areas of RE 11.8.5 were assessed against 'Eucalypt woodlands', RE 11.4.3 was assessed against 'Blue grass, wire grass' and RE 11.3.3a was assessed against 'Alluvial' photo standards (Table 10). The photo standards used to calculate biomass are different to previous years' assessments, although these photo standards are considered more representative of the actual vegetation communities observed on the MDS Project site. Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 2,500 kg/ha and 3,600 kg/ha 'Eucalypt woodlands' photo standards was reported as 3,050 kg/ha).

Ground photos used to assign biomass at the MDS Project site are shown in Appendix C.

Table 10: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture photo standards.

		Brigalow Belt	rigalow Belt Future Beef pasture photo standard type						
Photo monitoring site*	RE type	Eucalypt woodlands	Blue grass, wire grass	Alluvial	Downs country	Biomass kg/ha			
01	11.8.5	✓				1,800			
02	11.8.11				~	4,445			
03	11.8.5	~				3,050			

		Brigalow Belt	Brigalow Belt Future Beef pasture photo standard type						
Photo monitoring site*	RE type	Eucalypt woodlands	Blue grass, wire grass	Alluvial	Downs country	Biomass kg/ha			
04	11.8.11				✓	4,445			
05	11.8.5	✓				3,050			
06	11.8.11				✓	3,433			
07	11.4.3		✓			1,170			
08	11.8.11				✓	4,445			
09	11.3.3a			✓		3,405			
10	11.8.5	~				2,500			

3.4 GENERAL SITE INSPECTION

The condition of all fencing and access gates across the MDS Project site was good, with no requirement for repair at the time of surveying. A number of existing access tracks and firebreaks had clearly been subject to minor rutting as a consequence of rainfall in November, and will require re-grading following the 2021 wet season.

Field traverses in the south-west of the MDS Project site in June 2020 noted areas of RE 11.8.11a under stress, with the majority of *Melaleuca bracteata* in these areas showing signs of dieback. At the time of the November 2020 dry season surveys, there was additional evidence of epicormic regrowth, further lending weight to the suggestion that the vegetation community is in a state of recovery following the drought prior to the 2019/2020 wet season. The condition of these communities will need to continue to be monitored to exclude alternative reasons for the dieback (e.g. whether a consequence of hydrological changes).

Site traverses as part of all monitoring activities on the MDS Project site showed no obvious evidence of any dust deposition, nor any impacts attributable to dust deposition on king blue-grass, bluegrass or other vegetation communities.

3.4.1 Significant species

While targeted survey for *Dichanthium queenslandicum* (king blue-grass) and *D. setosum* were not scheduled to be undertaken at the MDS Project site as part of the dry season surveys, populations of both species was confirmed at the site. A population of *D. queenslandicum* was confirmed adjacent Site 8, with a population of *D. setosum* confirmed along the habitat condition transect at Site 3 (Figure 3).

Detailed surveys for king blue-grass and blue grass are scheduled to be undertaken along pre-determined survey transects as part of the post-wet season surveys in April 2021.

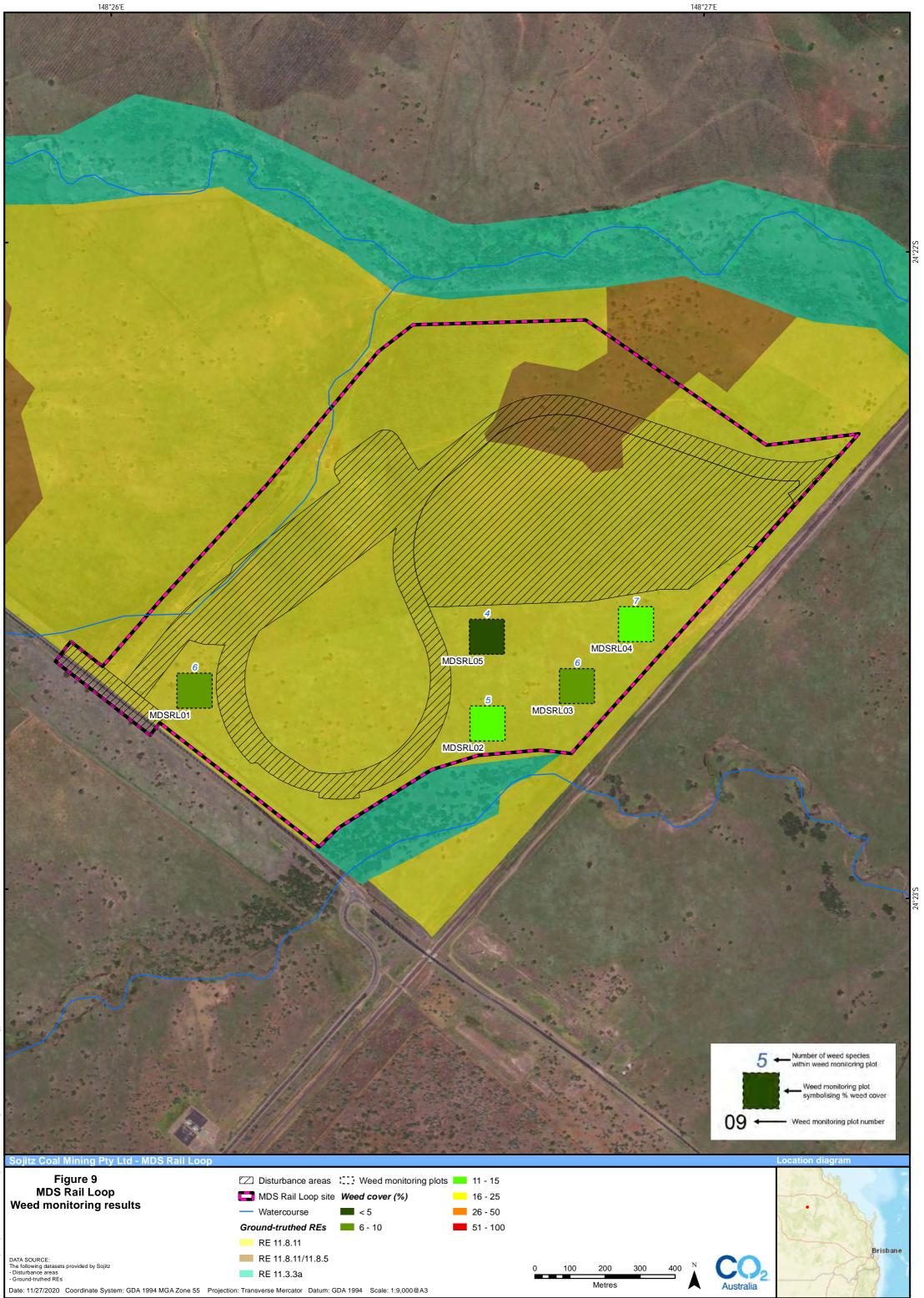
4 RESULTS: MDS RAIL LOOP SITE

4.1 WEED MONITORING

A total of eight weed species were identified from the five weed monitoring plots. No additional species of weeds were observed on the site outside of those identified within the weed monitoring plots. Across the five weed monitoring plots, the average number of weed species observed per plot was 5.6 species, ranging between four species (Site MDSRL05) and seven species (Site MDSRL04), with only one weed species (*Leucaena leucocephala*) encountered at a single site. Weed cover across the five weed monitoring plots averaged 8.3%; ranging between 2.9% (Site MDSRL05) and 14% (Site MDSRL02)(Table 11 and Figure 9).

The most commonly encountered weeds were *Setaria incrassata* and *Physalis lanceifolia*, each recorded from all five sites (Table 11). However, while encountered at all sites, the average cover of *Physalis lanceifolia* across those five encountered sites averaged only 0.4%, whereas *Setaria incrassata* had the highest average cover of 5.4%. *Cenchrus ciliaris* was encountered at three of the five sites, but had the second highest average cover, averaging 2.1% cover across the three sites it was recorded from (Table 11).

Scientific name	Common name	Family name	Percentage cover of weed species from given site					# sites	Avg cover (%) ^a
		Family name	MDSRL01	MDSRL02	MDSRL03	MDSRL04	MDSRL05	# sites	Avg cover (%)
Alternanthera pungens	Khaki weed	Amaranthaceae	0.1	0.1	0.2	0.5		4	0.2
Parthenium hysterophorus	Parthenium weed	Asteraceae	0.6		0.1	0.9		3	0.5
Leucaeana leucocephala	Leucaena	Fabaceae		0.1				1	0.1
Cenchrus ciliaris	Buffel grass	Роасеае	1.3	4.8		0.1		3	2.1
Melinis repens	Red natal grass	Роасеае	1.4		0.1	1.5	0.1	4	0.8
Setaria incrassata	Purple pigeon grass	Роасеае	2.6	8.5	7.4	6.9	1.7	5	5.4
Physalis lanceifolia	Gooseberry	Solanaceae	0.1	0.5	0.2	0.4	0.6	5	0.4
Verbena officinalis	Common verbena	Verbenaceae			0.2	0.1	0.5	3	0.3
		# species	6	5	6	7	4		
		Weed cover (%) ^b	6.0	14.0	8.2	10.4	2.9		


Table 11: Results of weed monitoring assessments at the MDS Rail Loop site.

^a Avg cover (%) represents the average percentage cover of a given weed species across encountered sites.

^b Weed cover represents the sum of the average weed cover percentages of all weed species.

.

4.2 **BIOMASS MONITORING**

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring all four of the sites comprising RE 11.8.11 (Table 12). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 2,140 kg/ha and 3,015 kg/ha 'Downs country' photo standards was reported as 2,578 kg/ha).

Photo monitoring showed limited variability in biomass of ground cover across the monitoring sites. Overall, there was moderate biomass for the vegetation type and time of year, ranging between 2,140 kg/ha and 2,578 kg/ha. This higher than expected biomass is likely a consequence of some rainfall at the site in the weeks prior to the survey.

Ground photos used to assign biomass at the MDS Rail Loop site are shown in Appendix D.

 Table 12: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture photo standards.

		Brigalow Belt Future Beef pasture photo standard type	
Photo monitoring site*	RE type	Downs country	Biomass kg/ha
MDSRL01	11.8.11	\checkmark	2,578
MDSRL02	11.8.11	\checkmark	2,140
MDSRL03	11.8.11	\checkmark	2,140
MDSRL04	11.8.11	\checkmark	2,578

* taken from the 50 m point of the permanent habitat monitoring transect.

4.3 GENERAL SITE INSPECTION

Construction of the MDS Rail Loop was complete at the time of the dry season survey. No development was observed outside of the extent of disturbance, and no rubbish or other matters likely to impact on the monitoring area was observed. This included no evidence of dust or other particulate material on the vegetation within the MDS Rail Loop monitoring area.

5 RESULTS: LEXINGTON OFFSET SITE

5.1 BIOMASS MONITORING

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for offset areas comprising of RE 11.8.11 and RE 11.8.11a, whilst photo monitoring results from areas of RE 11.8.4 and RE 11.8.5 were assessed against 'Narrow-leaved Ironbark' photo standards (Table 13).

Photo monitoring showed some variability in the biomass of ground cover. Sites in RE 11.8.11 and 11.8.11a were all at least 2,578 kg/ha and up to 4,445 kg/ha (Site 01), while biomass in RE 11.8.4 and RE 11.8.5 ranged between 1,475 kg/ha in rockier upslope areas (Site 02) and 5,000 kg/ha (Site 11) associated with more open grassy woodland areas (Table 13). The biomass across all sites was higher than expected for the end of the dry season, likely a consequence of rain during mid- to late October.

Ground photos used to assign biomass at the Lexington offset site are shown in Appendix E.

Table 13: Results of biomass monitoring on the Lexington offset site using Brigalow Belt Future Beef pasture photo standards.

		Brigalow Belt pasture pho	Brigalow Belt pasture photo standard type					
Photo monitoring site*	RE type	Narrow-leaved ironbark	Downs country	Biomass kg/ha				
01	11.8.11		✓	4,445				
02	11.8.4	✓		1,475				
03	11.8.11		✓	2,578				
04	11.8.5	✓		2,000				
05	11.8.4	✓		1,750				
06	11.8.11		✓	2,578				
07	11.8.4	✓		1,750				
08	11.8.11a		✓	2,578				
09	11.8.11a		✓	3,850				
10	11.8.11a		✓	3,015				
11	11.8.5	✓		5,000				
12	11.8.11		✓	3,850				
13	11.8.11		✓	3,850				
14	11.8.5	✓		3,625				
15	11.8.4	✓		2,000				
16	11.8.11		✓	3,015				
17	11.8.11		✓	3,015				
18	11.8.5	✓		3,625				
19	11.8.4	✓		2,000				

		Brigalow Belt pasture pho	to standard type	
Photo monitoring site*	RE type	Narrow-leaved ironbark	Downs country	Biomass kg/ha
20	11.8.11		\checkmark	4,445

* taken from the 0 m point of the permanent habitat monitoring transects (Sites 01 - 12) and the SW corner of the standalone weed monitoring plots (Sites 13 - 20).

5.2 GENERAL SITE INSPECTION

Ongoing upgrades and installations of fencing has occurred throughout the Lexington offset site since the post-wet season surveys in June 2020. Updated fencing and access tracks will be mapped and presented in the post-wet season reporting in 2021. Additional fencing extent and access tracks outside of the extent of traversed areas in November 2020 could not be confirmed and will need to be supplied.

It is understood that a share-farming agreement is in place to limit the head of cattle per paddock. However, past evidence of cattle were observed in the natural grassland areas in the west of the Lexington offset area during the dry season monitoring.

Outside of the weed monitoring plots assessed as part of the post-wet season surveys, there were a number of areas where weed infestation was considered serious. Most noticeably was the extent and density of weeds within and adjacent to the ephemeral drainage line and bore on Prickle Farm Road that flanks the western edge of the mining lease (ML 70376). As previously noted, the ephemeral drainage line continues to be densely infested by Noogoora burr (*Xanthium occidentale*), with areas away from the drainage line characterised by dense, monospecific stands of *Parthenium hysterophorus*. Furthermore, the coverage of *Vachellia farnesiana* appears to be increasing throughout the western Natural Grassland (RE 11.8.11) areas (Figure 10).

Figure 10: Extensive coverage of *Vachellia farnesiana* in natural Grassland areas (RE 11.8.11) in the west of the Lexington offset site.

5.2.1 Significant species

While targeted survey for *Dichanthium queenslandicum* (king blue-grass) and *D. setosum* were not scheduled to be undertaken at the Lexington offset site, numerous populations of both species was confirmed throughout the site. Specifically, a population of *D. queenslandicum* was confirmed from near the vicinity of Site 12 in Natural Grassland habitat (RE 11.8.11) in the east of the Lexington offset area (Figure 13).

The presence of non-flowering *D. setosum*² was also confirmed in areas of RE 11.8.5 and RE 11.8.4 in the west of the offset area. Similarly, large populations seen in June 2020 were again confirmed from the vicinity of weed monitoring plots near site 02, site 07 and site 19.

While flowering of *D. queenslandicum* and *D. setosum* is more typical during and after the wet season, the November rainfall is likely to have promoted the earlier than expected flush of growth.

Figure 11: A population of *Dichanthium queenslandicum* observed at Site 12 in the east of the Lexington offset area.

² Prior surveying by CO2 Australia ecologists in March 2018 confirmed the presence of a previously undescribed species of *Dichanthium* from the Lexington offset area. This species was given the interim name *Dichanthium sp. affine. sericeum* until such time as it is formally described. Since this initial 2018 survey, CO2 Australia ecologist Dr Jarrad Cousin has confirmed additional populations of this undescribed species from other properties in the greater Springsure - Rolleston area. While investigations into this undescribed species are continuing by botanists from the Queensland Herbarium, with assistance from CO2 Australia, discerning the two species in the field is difficult, especially when there is limited flowering material. Consequently, it is highly likely that many of the populations identified as *D. setosum* could in fact be the morphologically similar undescribed *Dichanthium* species. For the purposes of reporting however, and until such time as the species is formally described, any setosum-like species of *Dichanthium* is considered *D. setosum*.

6 RESULTS: LEXINGTON RAIL LOOP OFFSET SITE

6.1 WEED MONITORING

A total of 18 weed species were identified from the 12 weed monitoring plots. No additional species of weeds were observed on the site outside of those identified within the weed monitoring plots. Across the 12 weed monitoring plots, the average number of weed species observed per plot was 6.5 species, ranging between two species (Site LEXRL06 and LEXRL07) and 12 species (Site LEXRL09), with four weed species only encountered at single sites. Weed cover across the 12 weed monitoring plots averaged 10.2%; ranging between 1.2% (Site LEXRL05) and 29.2% (Site LEXRL09)(Table 14, Figure 12 and Figure 13).

The number of weed species differed by offset paddock, with the North Promenade paddock having a higher weed species richness and average cover (10 species and 20.6% cover) than Harry's (7 species and 7.5% cover), with Contours having the lowest weed species richness and average cover of all three paddocks (3.4 species and 3.4% cover).

The most commonly encountered weed was red natal grass (*Melinis repens*) which was recorded from all 12 sites (Table 14). *Parthenium hysterophorus* had the highest average cover of 5.7%, followed by sow thistle (*Sonchus oleracea*) which from the five sites it was encountered at, had an average cover of 3.1%. Eleven of the 18 weed species (61%) had average covers <0.5%.

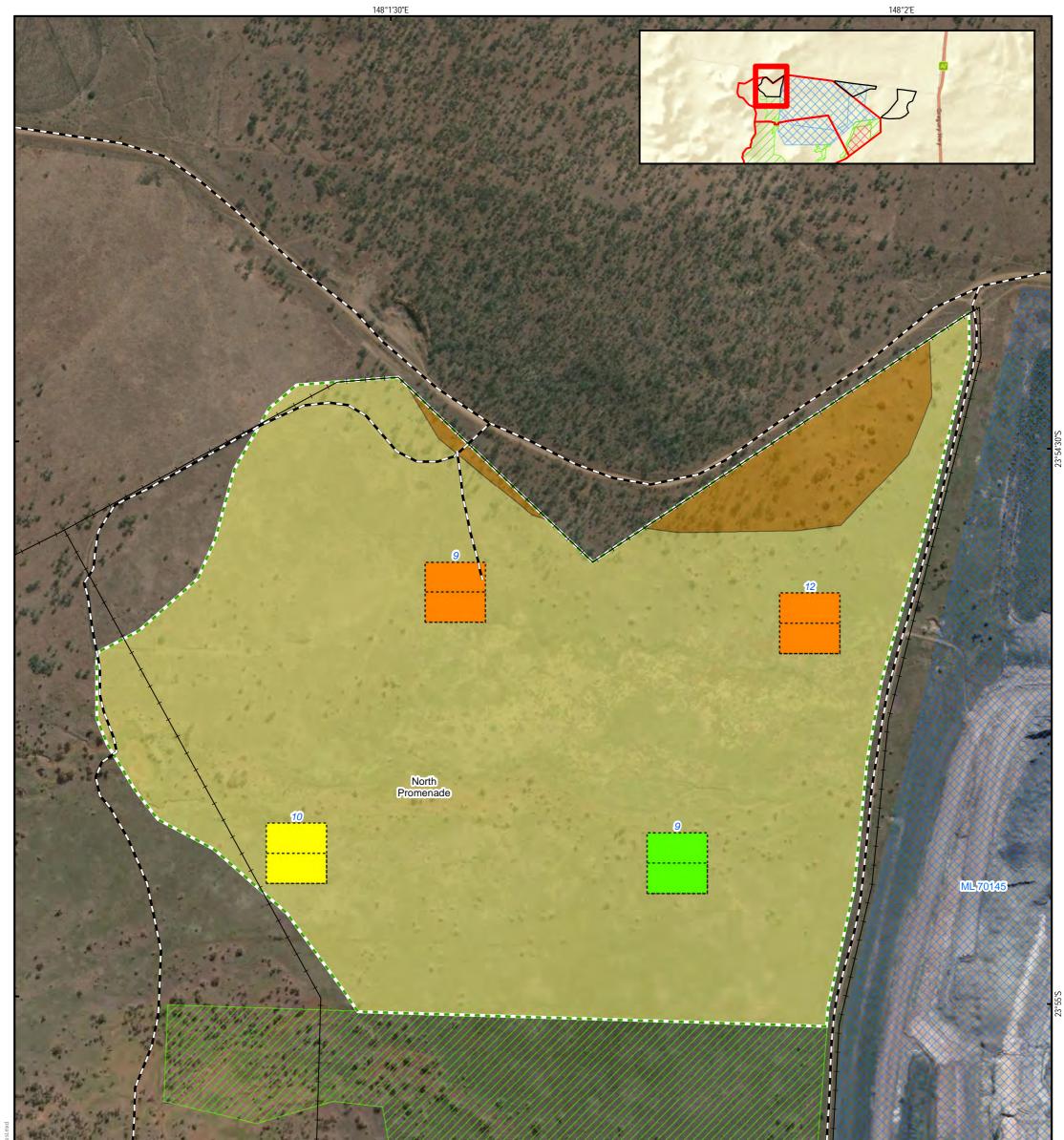
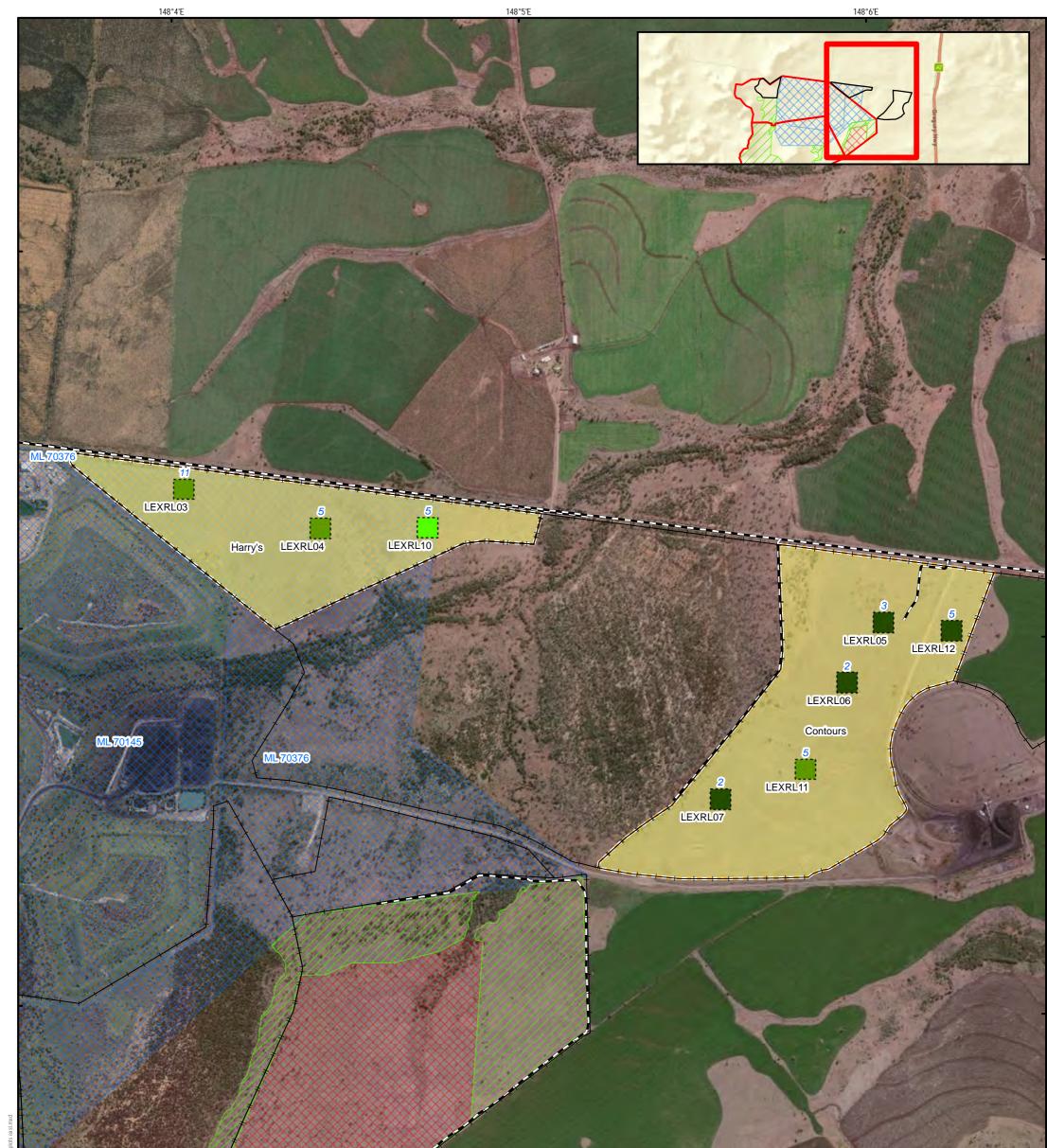

able 14: Results of weed moni	toring assessments at the	Lexington Rail Loop of	iset site.				Dorcontago	cover of we	od crocioc fr	om given sit	•					
Scientific name	Common name	Family name	LEXRL01	LEXRL02	LEXRL03	LEXRL04	LEXRL05	LEXRLO6	LEXRL07	LEXRL08	LEXRL09	LEXRL10	LEXRL11	LEXRL12	# sites	Avg cover (%) ^a
Alternanthera pungens	Khaki weed	Amaranthaceae	0.1												1	0.1
Lactuca serriola	Prickly lettuce	Asteraceae	0.3	0.3	0.2					2.2	0.4				5	0.7
Parthenium hysterophorus	Parthenium weed	Asteraceae	12.3	1.4	1.3	4.2				4.8	11.1	3.8	7.2		8	5.7
Senecio madagascariensis	Fireweed	Asteraceae	4.0	1.8	0.4					2.3	3.2				5	2.3
Sonchus oleracea	Sow thistle	Asteraceae	4.7	1.5						2.1	7.0	0.1			5	3.1
Tridax procumbens	Tridax daisy	Asteraceae			0.3	0.2						1.1			3	0.5
Verbesina encelioides	Goldweed	Asteraceae			0.1										1	0.1
Cucumis myriocarpus	Paddy melon	Cucurbitaceae								0.1					1	0.1
Clitoria ternatea	Butterfly pea	Fabaceae			0.6	0.2									2	0.4
Vachellia farnesiana	Mimosa bush	Fabaceae	3.0	2.9				2.5		3.7	3.0				5	3.0
Sida spinosa	Sida	Malvaceae	0.1	0.1	0.1										3	0.1
Cenchrus ciliaris	Buffel grass	Poaceae		0.2		0.1	0.1			0.5	1.1			0.1	6	0.4
Megathyrsus maximus	Guinea grass	Poaceae			0.1						0.2		0.1	0.1	4	0.1
Melinis repens	Red natal grass	Poaceae	0.3	1.7	0.2	1.1	0.8	0.4	1.0	0.4	0.1	3.3	1.5	1.6	12	1.0
Sorghum halepense	Johnson grass	Poaceae			0.5						0.5		0.1		3	0.4
Rumex crispus	Curled dock	Polygonaceae									0.3				1	0.3
Physalis lanceifolia	Gooseberry	Solanaceae								0.1	1.5			0.1	3	0.6
Verbena officinalis	Common verbena	Verbenaceae	0.5	0.3	1.5		0.3		0.5	1.7	0.8	3.2	0.2	0.5	10	0.9
		# species	9	9	11	5	3	2	2	10	12	5	5	5		
		Weed cover (%) ^b	25.3	10.2	5.3	5.8	1.2	2.9	1.5	17.9	29.2	11.5	9.1	2.4		

Table 14: Results of weed monitoring assessments at the Lexington Rail Loop offset site.

^a Avg cover (%) represents the average percentage cover of a given weed species across encountered sites.


^b Weed cover represents the sum of the average weed cover percentages of all weed species.

Sojitz Coal Mining Pty Ltd - Lexington Rail L	op offset					Location diagram
Figure 12	Lexington existing fences	Observed vegetati	on :::: Weed monitoring	plots 🔜 11 - 15		- Way
Lexington Rail Loop offset	Access tracks	E 11.8.11	Weed cover (%)	16 - 25		ink
Weed monitoring results - west	Lexington offset area	E 11.8.5	< 5	26 - 50		
222-220	Mining leases (ML70376 and ML701	145)	6 - 10	51 - 100		
15 \So jita	Lexington Rail Loop offset					Brisbane
DATA SOURCE: The following datasets are © State of Qld: - Mining leases The following datasets provided by Sojitz - Lexington Rai Loop offset areas	C North Promenade paddock		0 50	100 150 200 N Metres		Disbane
Date: 11/27/2020 Coordinate System: GDA 1994 MGA Zone 55 Proj				Mettes	Australia	

 \otimes

23°55'5

23°56'5

6.2 **BIOMASS MONITORING**

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring all twelve of the sites comprising RE 11.8.11 (Table 15). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 3,015 kg/ha and 3,850 kg/ha 'Downs country' photo standards was reported as 3,433 kg/ha).

Photo monitoring showed some variability in biomass of ground cover across all 12 photo monitoring sites. Overall, there was a high biomass for the grassland vegetation type. Aside from a single site supporting an estimated 1,610 kg/ha (Site LEXRL09), all sites supported at least 2,578 kg/ha, including one site (LEXRL12) supporting 5,040 kg/ha. The average biomass varied considerably between the offset paddocks, with the average biomass at Contours (4,564 kg/ha) greater than at Harry's (3,346 kg/ha) and greater again than at North Promenade (3,081 kg/ha).

Ground photos used to assign biomass at the Lexington Rail Loop offset site are shown in Appendix F.

Table 15: Results of biomass monitoring on the Lexington Rail Loop offset site using Brigalow Belt Future Beef
pasture photo standards.

		Brigalow Belt Future Beef pasture photo standard type	
Photo monitoring site*	RE type	Downs country	Biomass kg/ha
LEXRL01 – North Promenade paddock	11.8.11	\checkmark	3,015
LEXRL02 – North Promenade paddock	11.8.11	✓	3,850
LEXRL03 – Harry's paddock	11.8.11	✓	2,578
LEXRL04 – Harry's paddock	11.8.11	✓	3,015
LEXRL05 – Contours paddock	11.8.11	\checkmark	4,445
LEXRL06 – Contours paddock	11.8.11	\checkmark	4,445
LEXRL07 – Contours paddock	11.8.11	\checkmark	4,445
LEXRL08 – North Promenade paddock	11.8.11	✓	3,850
LEXRL09 – North Promenade paddock	11.8.11	✓	1,610
LEXRL10 – Harry's paddock	11.8.11	✓	4,445
LEXRL11 – Contours paddock	11.8.11	✓	4,445
LEXRL12 – Contours paddock	11.8.11	\checkmark	5,040

* taken from the 0 m point of the permanent habitat monitoring transects (Sites LEXRL01 – LEXRL07) and the SW corner of the standalone weed monitoring plots (Sites LEXRL08 – LEXRL12).

6.3 GENERAL SITE INSPECTION

It is understood that a share-farming agreement is in place to limit the head of cattle per paddock. A herd of 5-6 horses was encountered within Harry's Paddock, with evidence throughout the paddock of horse manure. Likewise, evidence of cattle was observed within Contours paddock and in the vicinity of the southern boundary of North Promenade paddock.

All fences bounding the paddocks were in good condition. Access to many of the monitoring sites in the Contours paddock was via an access track outside of and adjacent to the western boundary of the paddock,

whereas access to monitoring sites in Harry's paddock was via Wurba Road and access to the North Promenade monitoring sites was via existing access tracks into Lexington.

6.3.1 Significant species

While targeted survey for *Dichanthium queenslandicum* (king blue-grass) were not scheduled to be undertaken at the Lexington Rail Loop offset site, numerous populations of the species was confirmed. Most notably, a significant population of *D. queenslandicum* was noted throughout the LEXRL12 weed monitoring plot in the Contours paddock, with a population estimate of >250 tussocks (Figure 14). Further populations of *D. queenslandicum* were also confirmed from multiple locations within the LEXRL05 weed monitoring plot in the same paddock.

Figure 14: A population of more than 250 tussocks of *Dichanthium queenslandicum* observed at LEXRL12.

7 REFERENCES

Auld, B. (2009). *Guidelines for Monitoring Weed Control and Recovery of Native Vegetation*. NSW Department of Primary Industries. Bureau of Rural Sciences, Orange NSW.

CO2 Australia (2017). *MNESMP Baseline Monitoring Report – Meteor Downs South Coal Mine Project*. CO2 Australia, Brisbane, QLD.

CO2 Australia (2018). *Lexington Offset Area Initial Baseline Monitoring Report – Meteor Downs South Project*. CO2 Australia, Brisbane, QLD.

CO2 Australia (2020). Post-wet Season Monitoring Report – Year 3 (2019/20). CO2 Australia, Brisbane, QLD.

Department of Environment and Heritage Protection (DEHP). (2017). *Guide to determining terrestrial habitat quality – version 1.2.* Department of Environment and Heritage Protection (State of Queensland), Brisbane.

SLR Consulting (SLR) (2019). *Matters of National Environmental Significance Management Plan – Meteor Downs South Rail Loop Project*. A report prepared for Sojitz Coal Mining Pty Ltd. SLR Consulting, Townsville.

APPENDIX A MONITORING SITE LOCATIONS

MDS PROJECT SITE

Table A-1: Dry-season monitoring site locations and purpose on the MDS Project site.

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
	H01_0m	641462	7304249	✓	Squatter pigeon	\checkmark	\checkmark
01	H01_50m	641462	7304301	~		✓	
	W01_01	641462	7304249	~		✓	
	W01_02	641462	7304301	✓			
	W01_03	641462	7304348				
	H02_0m	640199	7303572	✓		✓	\checkmark
	H02_50m	640203	7303621	\checkmark	 Natural Grasslands TEC, King blue-grass, bluegrass 	✓	
02	W02_01	640199	7303572	\checkmark		✓	
	W02_02	640203	7303621	✓			
	W02_03	640210	7303627				
03	H03_0m	638418	7303259	✓	- Squatter pigeon	✓	\checkmark
	H03_50m	638425	7303308	✓		✓	
	W03_01	638418	7303259	~		✓	
	W03_02	638425	7303308	~			
	W03_03	638430	7303358				
04	H04_0m	637945	7300236	~	Natural Grasslands TEC, King blue-grass, bluegrass	✓	✓

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
	H04_50m	637951	7300287	✓		\checkmark	
	W04_01	637945	7300236	✓		✓	
	W04_02	637951	7300287	✓			
	W04_03	637950	7300338				
05	H05_0m	638426	7299836	~	Squatter pigeon	✓	✓
	H05_50m	638420	7299885	✓		✓	
	W05_01	638426	7299836	✓		✓	
	W05_02	638420	7299885	✓			
	W05_03	638416	7299937				
	H06_0m	637445	7299566	✓		✓	✓
	H06_50m	637447	7299615	✓	 Natural Grasslands TEC, King blue-grass, bluegrass 	✓	
06	W06_01	637445	7299566	✓		✓	
	W06_02	637447	7299615	✓			
	W06_03	637443	7299668				
	H07_0m	638426	7298876	✓	Brigalow TEC	✓	✓
	H07_50m	638419	7298926	✓		✓	
07	W07_01	638426	7298876	~		✓	
	W07_02	638419	7298926	~			
	W07_03	638423	7298974				
08	H08_0m	637032	7298735	~	Natural Grasslands TEC, King blue-grass, bluegrass	✓	✓

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
	H08_50m	637034	7298785	✓		✓	
	W08_01	637032	7298735	✓		✓	
	W08_02	637034	7298785	\checkmark			
	W08_03	637039	7298835				
	H09_0m	638387	7298599	✓	Australian pointed spins	~	\checkmark
	H09_50m	638380	7298648	✓	Australian painted snipe	~	
09	W09_01	638387	7298599	~		✓	
	W09_02	638380	7298648	~			
	W09_03	638372	7298699				
	H10_0m	636412	7297523	~	Country sinces	✓	✓
	H10_50m	636415	7297571	~	 Squatter pigeon 	~	
10	W10_01	636412	7297523	✓		✓	
	W10_02	636415	7297571	✓			
	W10_03	636413	7297617				
	W11_01	642941	7304772	✓		✓	
11	W11_02	642937	7304825				
	W11_03	642938	7304876				
	W12_01	641428	7303597	~		✓	
12	W12_02	641426	7303646				
	W12_03	641429	7303696				

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
	W13_01	641896	7303196	\checkmark		✓	
13	W13_02	641899	7303247				
	W13_03	641900	7303297				
	W14_01	638991	7303038	\checkmark		✓	
14	W14_02	638987	7303090				
	W14_03	638988	7303140				
	W15_01	637797	7302245	✓		✓	
15	W15_02	637796	7302296				
	W15_03	637796	7302347				
	W16_01	638556	7300785	✓		✓	
16	W16_02	638560	7300832				
	W16_03	638566	7300882				
	W17_01	637029	7300184	✓		✓	
17	W17_02	637028	7300231				
	W17_03	637024	7300282				
	W18_01	637401	7300321	✓		✓	
18	W18_02	637401	7300368				
	W18_03	637398	7300421				
19	W19_01	638301	7301720	\checkmark		✓	
19	W19_02	638295	7301771				

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
	W19_03	638290	7301821				
	W20_01	636740	7298674	\checkmark		\checkmark	
20	W20_02	636746	7298723				
	W20_03	636752	7298771				

^a Start points with prefix H = habitat assessment sites (HXX_0m and HXX_50m corresponds to 0 m and 50 m point of north-south habitat assessment transect), W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

MDS RAIL LOOP SITE

Table A-2: Dry-season monitoring site locations and purpose on the MDS Rail Loop site.

Site	Start point name ^a	Easting	Northing	Star picket?	Weed monitoring	Biomass monitoring
	W01_01	645575	7303101	✓	\checkmark	
MDSRL01	W01_02	645575	7303151	✓	\checkmark	\checkmark
	W01_03	645575	7303201		\checkmark	
	W02_01	646410	7303007	\checkmark	\checkmark	
MDSRL02	W02_02	646410	7303057	\checkmark	\checkmark	\checkmark

Site	Start point name ^a	Easting	Northing	Star picket?	Weed monitoring	Biomass monitoring
	W02_03	646410	7303107		\checkmark	
	W03_01	646666	7303114	✓	\checkmark	
MDSRL03	W03_02	646666	7303164	✓	\checkmark	\checkmark
	W03_03	646666	7303214		\checkmark	
	W04_01	646834	7303291	✓	✓	
MDSRL04	W04_02	646834	7303341	✓	✓	✓
	W04_03	646834	7303391		✓	
	W05_01	646409	7303255	✓	✓	
MDSRL05	W05_02	646409	7303305		✓	
	W05_03	646409	7303355		\checkmark	

^a Start points with prefix W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

LEXINGTON OFFSET SITE

Table A-3: Dry-season monitoring site locations and purpose on the Lexington offset site.

Site	Start point name ^a	Easting	Northing	Star picket?	Biomass monitoring
	W01_01	604331	7354000	✓	✓
01	W01_02	604331	7353950	✓	
	W01_03	604331	7353900		
	W02_01	603925	7353100	\checkmark	✓
02	W02_02	603908	7353053	\checkmark	
	W02_03	603892	7353005		
	W03_01	604380	7352577	\checkmark	\checkmark
03	W03_02	604380	7352527	\checkmark	
	W03_03	604380	7352477		
	W04_01	603904	7351791	\checkmark	✓
04	W04_02	603904	7351741	\checkmark	
	W04_03	603904	7351691		
	W05_01	603360	7351127	✓	✓
05	W05_02	603345	7351079	✓	
	W05_03	603330	7351031		
	W06_01	604790	7351295	✓	✓
06	W06_02	604790	7351245	✓	
	W06_03	604790	7351195		

Site	Start point name ^a	Easting	Northing	Star picket?	Biomass monitoring
	W07_01	604649	7350850	\checkmark	\checkmark
07	W07_02	604649	7350800	\checkmark	
	W07_03	604649	7350750		
	W08_01	606488	7350461	\checkmark	✓
08	W08_02	606488	7350411	\checkmark	
	W08_03	606488	7350361		
	W09_01	607401	7351233	\checkmark	✓
09	W09_02	607401	7351183	✓	
	W09_03	607401	7351133		
	W10_01	607175	7351671	✓	✓
10	W10_02	607175	7351621	✓	
	W10_03	607175	7351571		
	W11_01	609631	7353204	✓	✓
11	W11_02	609631	7353154	✓	
	W11_03	609631	7353104		
	W12_01	610371	7353217	✓	~
12	W12_02	610371	7353167	✓	
	W12_03	610371	7353117		
	W13_01	610237	7352615	✓	~
13	W13_02	610237	7352565	✓	
	W13_03	610237	7352515		

Site	Start point name ^a	Easting	Northing	Star picket?	Biomass monitoring
	W14_01	604883	7354051	\checkmark	\checkmark
14	W14_02	604883	7354001		
	W14_03	604883	7353951		
	W15_01	604543	7352984	\checkmark	\checkmark
15	W15_02	604543	7352934		
	W15_03	604543	7352884		
	W16_01	604604	7352289	\checkmark	\checkmark
16	W16_02	604604	7352239		
	W16_03	604604	7352189		
	W17_01	604503	7351656	\checkmark	\checkmark
17	W17_02	604503	7351606		
	W17_03	604503	7351556		
	W18_01	604074	7350714	✓	\checkmark
18	W18_02	604074	7350664		
	W18_03	604074	7350614		
	W19_01	603812	7352530	✓	\checkmark
19	W19_02	603798	7352482		
	W19_03	603784	7352434		
	W20_01	610453	7352923	✓	✓
20	W20_02	610453	7352873		
	W20_03	610453	7352823		

^a Start points with prefix W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

LEXINGTON RAIL LOOP OFFSET SITE

Table A-4: Dry-season monitoring site locations and purpose on the Lexington Rail Loop offset site.

Site	Start point name ^a	Easting	Northing	Star picket?	Weed monitoring	Biomass monitoring
	W01_01	604390	7355247	\checkmark	\checkmark	\checkmark
LEXRL01	W01_02	604390	7355297		\checkmark	
	W01_03	604390	7355347		✓	
	W02_01	604758	7354797	✓	\checkmark	~
LEXRL02	W02_02	604758	7354847		\checkmark	
	W02_03	604758	7354897		✓	
	W03_01	608595	7355228	✓	✓	✓
LEXRL03	W03_02	608595	7355278		\checkmark	
	W03_03	608595	7355328		\checkmark	
	W04_01	609262	7355036	✓	\checkmark	✓
LEXRL04	W04_02	609262	7355086		\checkmark	
	W04_03	609262	7355136		\checkmark	
	W05_01	612011	7354575	✓	\checkmark	~
LEXRL05	W05_02	612011	7354625		\checkmark	
	W05_03	612011	7354675		\checkmark	
	W06_01	611834	7354280	✓	\checkmark	~
LEXRL06	W06_02	611834	7354330		\checkmark	

Site	Start point name ^a	Easting	Northing	Star picket?	Weed monitoring	Biomass monitoring
	W06_03	611834	7354380		\checkmark	
	W07_01	611215	7353711	✓	\checkmark	✓
LEXRL07	W07_02	611215	7353761		\checkmark	
	W07_03	611215	7353811		\checkmark	
	W08_01	604126	7354813	✓	\checkmark	\checkmark
LEXRL08	W08_02	604126	7354863		\checkmark	
	W08_03	604126	7354913		\checkmark	
	W09_01	604978	7355196	✓	\checkmark	✓
LEXRL09	W09_02	604978	7355246		\checkmark	
	W09_03	604978	7355296		\checkmark	
	W010_01	609785	7355039	✓	\checkmark	\checkmark
LEXRL10	W010_02	609785	7355089		\checkmark	
	W010_03	609785	7355139		\checkmark	
	W11_01	611630	7353857	✓	\checkmark	✓
LEXRL11	W11_02	611630	7353907		\checkmark	
	W11_03	611630	7353957		\checkmark	
	W12_01	612344	7354534	✓	\checkmark	\checkmark
LEXRL12	W12_02	612344	7354584		\checkmark	
	W12_03	612344	7354634		\checkmark	

^a Start points with prefix W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

APPENDIX B MDS PROJECT SITE YEAR 4 HABITAT CONDITION ASSESSMENT

The following tables provide details of the habitat condition assessments undertaken during the Year 4 monitoring period at the MDS Project site (Meteor Downs South). Habitat condition scores were calculated in accordance with the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017). The data required to inform the site condition, fauna species habitat index scores and flora species stocking rates were collected as part of detailed field surveys in December 2019. The site context score was calculated based on a desktop assessment following the method prescribed in the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017), incorporating ground-truthed regional ecosystem mapping within the extent of ML70452.

Table B-1: Site condition raw data for each RE assessment unit

	Site 0 RE 11			Site 0 RE 11			Site 03 RE 11.			Site 0 RE 11			Site 0 RE 11			Site 0 RE 11			Site 0 RE 11			Site 0 RE 11			Site 0 RE 11			Site 10 RE 11.		
Ecological condition indicators	Raw data	Benchmark (11.8.5)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.5)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.5)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.4.3)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.3.3)	Score	Raw data	Benchmark (11.8.5)	Score
Recruitment of woody perennial species	100	100	5		-	-	100	100	5		-	-	100	100	5		-	-	100	100	5		-	-	100	100	5	100	100	5
Native plant species richness - trees	2	2	5		-	-	4	2	5		-	-	1	2	3		-	-	6	2	5		-	-	2	3	3	2	2	5
Native plant species richness - shrubs	1	3	3		-	-	2	3	3		-	-	1	3	3		-	-	5	10	3		-	-	1	5	2.5	2	3	3
Native plant species richness - grasses	9	6	5	9	11	3	7	6	5	6	11	3	8	6	5	9	11	3	10	4	5	8	11	3	7	12	3	6	6	5
Native plant species richness - forbs	9	16	3	6	17	3	13	16	3	8	17	3	13	16	3	11	17	3	15	13	5	7	17	3	9	15	3	8	16	3
Tree canopy height	14.2	15	_		-	-	17.1	15	5		-		10.9	15			-		11.7	24			-		8.8	18		15.5	15	-
Tree sub canopy height	6.4	5	5		-		6.5	5			-	-	0	5	2.5		-	-			3		-	-	0	10	1.5	6.2	5	5
Tree canopy cover	3.6	13			-		15.3	13	_		-		0	13			-		33.9	70	_		-		19.5	28	2.5	6.9	13	2.5
Tree sub canopy cover	0	4	1		-	-	2.2	4	5		-	-	0	4	0		-	-			2		-	-	0	5		0	4	2.5
Shrub canopy cover	1.1	3	3		-	-	0	3	0		-	-	0	3	0		-	-	2.5	48	0		-	-	0.9	4	3	1.3	3	3
Native perennial grass cover	54	60	3	50	43	5	69	60	5	60	43	5	36	60	3	41	43	5	10.4	6	5	46	43	5	40	45	3	61	60	5
Organic litter	38.2	25	5	41	13	3	23	25	5	20	13	5	46	25	5	45	13	3	72.2	75	5	37	13	3	39	30	5	32.6	25	5
Large eucalypt trees	6	6	10		-		12	6	15		-		2	6	- 5		-			0	0		-		0	10	0	8	6	15
Large non-eucalypt trees	0	0	10		-	-	0	0	15		-	-	0	0	5		-	-	0	80	0		-	-	0	0	0	0	0	15
Coarse woody debris	133	250	5		-	-	542	250	2		-	-	63	250	2		-	-	769	1752	2		-	-	0	285	0	196	250	5
Non-native plant cover	0.2	0	10	0.75	0	10	0.1	0	10	15.3	0	5	0.5	0	10	0.3	0	10	0	0	10	0.4	0	10	7.5	0	5	3.05	0	10
Total			63			24			68			21			46.5			24			50			24			36.5			71.5
/10			7.88			8.00			8.50			7.00			5.81			8.00			6.25			8.00			4.56			8.94

	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10
	11.8.5	11.8.11	11.8.5	11.8.11	11.8.5	11.8.11	11.4.3	11.8.11	11.3.3a	11.8.5
MNES values	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Brigalow TEC	Natural Grasslands TEC, King blue-grass, Bluegrass	Australian painted snipe	Squatter pigeor
Site condition										
Recruitment of woody perennial species	5	-	5	-	5	-	5	-	5	5
Native plant species richness - trees	5	-	5	-	3	-	5	-	3	5
Native plant species richness - shrubs	3	-	3	-	3	-	3	-	2.5	3
Native plant species richness - grasses	5	3	5	3	5	3	5	3	3	5
Native plant species richness - forbs	3	3	3	3	3	3	5	3	3	3
Tree canopy height	5	-	5	-	2.5	-	3	-	1.5	5
Tree canopy cover	1	-	5	-	0	-	2	-	2.5	2.5
Shrub canopy cover	3	-	0	-	0	-	0	-	3	3
Native perennial grass cover	3	5	5	5	3	5	5	5	3	5
Organic litter	5	3	5	5	5	3	5	3	5	5
Large trees	10	-	15	-	5	-	0	-	0	15
Coarse woody debris	5	-	2	-	2	-	2	-	0	5
Non-native plant cover	10	10	10	5	10	10	10	10	5	10
Total of BioCondition attributes	63	24	68	21	46.5	24	50	24	36.5	71.5
MAX ecological condition score	80	30	80	30	80	30	80	30	80	80
Score /10	7.88	8.00	8.50	7.00	5.81	8.00	6.25	8.00	4.56	8.94
Site context		1	1	1	1	1				
Size of patch (fragmented bioregions)	10	10	10	10	10	10	10	10	10	10
Connectivity (fragmented bioregions)	5	4	5	5	5	5	5	5	5	5
Context (fragmented bioregions)	5	4	5	5	5	4	5	4	5	5
Distance to permanent watering point (intact bioregions)	-	-	-	-	-	-	-	-	-	-
Ecological corridors	0	0	0	0	0	0	0	0	0	0
Total of site context attributes	20	18	20	20	20	19	20	19	20	20
MAX site condition score	26	26	26	26	26	26	26	26	26	26
Score /10	7.69	6.92	7.69	7.69	7.69	7.31	7.69	7.31	7.69	7.69
Fauna species habitat index		1	1	1	1	1	1			
Threats to species	7	-	7	-	7	-	-	-	1	7
Quality and availability of food and foraging habitat	5	-	5	-	5	-	-	-	5	5
Quality and availability of shelter	5	-	5	-	5	-	-	-	5	5
Species mobility capacity	10	_	10	-	10	-	-	_	1	10

										Adotrana
	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10
	11.8.5	11.8.11	11.8.5	11.8.11	11.8.5	11.8.11	11.4.3	11.8.11	11.3.3a	11.8.5
MNES values	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Squatter pigeon	Natural Grasslands TEC, King blue-grass, Bluegrass	Brigalow TEC	Natural Grasslands TEC, King blue-grass, Bluegrass	Australian painted snipe	Squatter pigeon
Role of site location to species overall population in the state	3	-	3	-	3	-	-	-	4	3
Total of fauna species habitat index	30	-	30	-	30	-	-	-	16	30
MAX fauna habitat index score	50	-	50	-	50	-	-	-	50	50
Score /10	6.00	-	6.00	-	6.00	-	-	-	3.20	6.00

Table B-3: Summary of the species stocking rate index for king blue-grass and bluegrass

Species stocking rate /3ª	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10
species stocking rate / 5	11.8.5	11.8.11	11.8.5	11.8.11	11.8.5	11.8.11	11.4.3	11.8.11	11.3.3a	11.8.5
King blue-grass	-	0	-	0	-	0	-	0	-	-
Bluegrass	-	0	-	0	-	0	-	0	-	-

^a species stocking rate contributes 20% toward the habitat condition score for the two MNES flora species, with the remaining 80% made up of site condition and site context.

Table B-4: Summary of the MNES habitat condition score for each RE assessment unit

	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10	FINAL MNES
Assessment unit habitat condition score /10	11.8.5	11.8.11	11.8.5	11.8.11	11.8.5	11.8.11	11.4.3	11.8.11	11.3.3a	11.8.5	habitat quality score
Brigalow TEC	-	-	-	-	-	-	6.60	-	-	-	6.60
Natural Grasslands TEC	-	7.50	-	7.32	-	7.68	-	7.68	-	-	7.54
King blue-grass	-	6.00	-	5.86	-	6.14	-	6.14	-	-	6.04
Bluegrass	-	6.00	-	5.86	-	6.14	-	6.14	-	-	6.04
Squatter pigeon	7.24	-	8.21	-	6.19	-	-	-	-	8.43	7.52
Australian painted snipe	-	-	-	-	-	-	-	-	4.14	-	4.14

APPENDIX C MDS PROJECT SITE PHOTO MONITORING

SITE 01 – H01_0M

Photo C-1 North

Photo C-2 East

Photo C-5 Ground

SITE 01 - H01_50M

Photo C-6 North

Photo C-7 East

Photo C-8 South

Photo C-9 West

Photo C-10 Ground

SITE 02 – H02_0 M

Photo C-11 North

Photo C-12 East

Photo C-13 South

Photo C-14 West

Photo C-15 Ground

SITE 02 – H02_50M

Photo C-16 North

Photo C-17 East

Photo C-18 South

Photo C-19 West

Photo C-20 Ground

SITE 03 – H03_0M

Photo C-21 North

Photo C-22 East

Photo C-23 South

Photo C-24 West

Photo C-25 Ground

SITE 03 - H03_50M

Photo C-26 North

Photo C-27 East

Photo C-28 South

Photo C-29 West

Photo C-30 Ground

SITE 04 - H04_0M

Photo C-31 North

Photo C-32 East

Photo C-33 South

Photo C-34 West

Photo C-35 Ground

SITE 04 - H04_50M

Photo C-36 North

Photo C-37 East

Photo C-38 South

Photo C-39 West

Photo C-40 Ground

SITE 05 – H05_0M

Photo C-41 North

Photo C-42 East

Photo C-44 West

Photo C-45 Ground

SITE 05 - H05_50M

Photo C-46 North

Photo C-47 East

Photo C-48 South

Photo C-49 West

Photo C-50 Ground

SITE 06 - H06_0M

Photo C-51 North

Photo C-52 East

Photo C-53 South

Photo C-54 West

Photo C-55 Ground

SITE 06 - H06_50M

Photo C-56 North

Photo C-57 East

Photo C-58 South

Photo C-59 West

Photo C-60 Ground

SITE 07 – H07_0M

Photo C-61 North

Photo C-62 East

Photo C-63 South

Photo C-64 West

Photo C-65 Ground

SITE 07 – H07_50M

Photo C-66 North

Photo C-67 East

Photo C-68 South

Photo C-69 West

Photo C-70 Ground

SITE 08 – H08_0M

Photo C-71 North

Photo C-72 East

Photo C-73 South

Photo C-74 West

Photo C-75 Ground

SITE 08 - H08_50M

Photo C-76 North

Photo C-77 East

Photo C-78 South

Photo C-79 West

Photo C-80 Ground

SITE 09 – H09_0M

Photo C-81 North

Photo C-82 East

Photo C-83 South

Photo C-84 West

Photo C-85 Ground

SITE 09 - H09_50M

Photo C-86 North

Photo C-87 East

Photo C-88 South

Photo C-89 West

Photo C-90 Ground

SITE 10 – H10_0M

Photo C-91 North

Photo C-92 East

Photo C-93 South

Photo C-94 West

Photo C-95 Ground

SITE 10 - H10_50M

Photo C-96 North

Photo C-97 East

Photo C-98 South

Photo C-99 West

Photo C-100 Ground

SITE 11 - W11_0

Photo C-101 North

Photo C-102 East

Photo C-103 South

Photo C-104 West

Photo C-105 Ground

SITE 12 – W12_0

Photo C-106 North

Photo C-107 East

Photo C-108 South

Photo C-109 West

Photo C-110 Ground

SITE 13 – W13_0

Photo C-111 North

Photo C-112 East

Photo C-113 South

Photo C-114 West

Photo C-115 Ground

SITE 14 - W14_0

Photo C-116 North

Photo C-117 East

Photo C-118 South

Photo C-119 West

Photo C-120 Ground

SITE 15 - W15_0

Photo C-121 North

Photo C-122 East

Photo C-123 South

Photo C-124 West

Photo C-125 Ground

SITE 16 - W16_0

Photo C-126 North

Photo C-127 East

Photo C-128 South

Photo C-129 West

Photo C-130 Ground

SITE 17 – W17_0

Photo C-131 North

Photo C-132 East

Photo C-133 South

Photo C-134 West

Photo C-135 Ground

SITE 18 - W18_0

Photo C-136 North

Photo C-137 East

Photo C-138 South

Photo C-139 West

Photo C-140 Ground

SITE 19 – W19_0

Photo C-141 North

Photo C-142 East

Photo C-143 South

Photo C-144 West

Photo C-145 Ground

SITE 20 - W20_0

Photo C-146 North

Photo C-147 East

Photo C-148 South

Photo C-149 West

Photo C-150 Ground

APPENDIX D MDS RAIL LOOP SITE PHOTO MONITORING

SITE MDSRL01 – H01_0M

Photo D-1 North

Photo D-2 East

Photo D-3 South

Photo D-4 West

Photo D-5 Ground

SITE MDSRL01 – H01_50M

Photo D-6 North

Photo D-7 East

Photo D-8 South

Photo D-9 West

Photo D-10 Ground

SITE MDSRL02 – H02_0 M

Photo D-11 North

Photo D-12 East

Photo D-13 South

Photo D-14 West

Photo D-15 Ground

SITE MDSRL02 – H02_50M

Photo D-16 North

Photo D-17 East

Photo D-18 South

Photo D-19 West

Photo D-20 Ground

SITE MDSRL03 – H03_0M

Photo D-21 North

Photo D-22 East

Photo D-23 South

Photo D-24 West

Photo D-25 Ground

SITE MDSRL03 – H03_50M

Photo D-26 North

Photo D-27 East

Photo D-28 South

Photo D-29 West

Photo D-30 Ground

SITE MDSRL04 – H04_0M

Photo D-31 North

Photo D-32 East

Photo D-33 South

Photo D-34 West

Photo D-35 Ground

SITE MDSRL04 – H04_50M

Photo D-36 North

Photo D-37 East

Photo D-38 South

Photo D-39 West

Photo D-40 Ground

SITE MDSRL05 – W05_0

Photo D-41 North

Photo D-42 East

Photo D-43 South

Photo D-44 West

Photo D-45 Ground

APPENDIX E LEXINGTON OFFSET SITE PHOTO MONITORING

SITE 01 - H01_0M

Photo E-1 North

Photo E-2 East

Photo E-3 South

Photo E-4 West

Photo E-5 Ground

SITE 01 - H01_50M

Photo E-6 North

Photo E-7 East

Photo E-8 South

Photo E-9 West

Photo E-10 Ground

SITE 02 – H02_0M


```
Photo E-11 North
```

Photo E-12 East

Photo E-13 South

Photo E-14 West

Photo E-15 Ground

SITE 02 – H02_50M

Photo E-16 North

Photo E-17 East

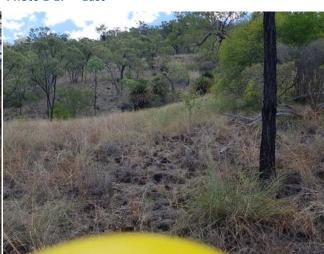


Photo E-18 South

Photo E-19 West

Photo E-20 Ground

SITE 03 – H03_0M

Photo E-21 North

Photo E-22 East

Photo E-23 South

Photo E-24 West

Photo E-25 Ground

SITE 03 – H03_50M

Photo E-26 North

Photo E-27 East

Photo E-28 South

Photo E-29 West

Photo E-30 Ground

SITE 04 - H04_0M

Photo E-31 North

Photo E-32 East

Photo E-33 South

Photo E-34 West

Photo E-35 Ground

SITE 04 - H04_50M

Photo E-36 North

Photo E-37 East

Photo E-38 South

Photo E-39 West

Photo E-40 Ground

SITE 05 – H05_0M

Photo E-41 North

Photo E-42 East

Photo E-43 South

Photo E-44 West

Photo E-45 Ground

SITE 05 - H05_50M

Photo E-46 North

Photo E-47 East

Photo E-48 South

Photo E-49 West

Photo E-50 Ground

SITE 06 - H06_0M

Photo E-51 North

Photo E-52 East

Photo E-53 South

Photo E-54 West

Photo E-55 Ground

SITE 06 - H06_50M

Photo E-56 North

Photo E-57 East

Photo E-58 South

Photo E-59 West

Photo E-60 Ground

SITE 07 – H07_0M

Photo E-61 North

Photo E-62 East

Photo E-63 South

Photo E-64 West

Photo E-65 Ground

SITE 07 – H07_50M

Photo E-66 North

Photo E-67 East

Photo E-68 South

Photo E-69 West

Photo E-70 Ground

SITE 08 – H08_0M

Photo E-71 North

Photo E-72 East

Photo E-73 South

Photo E-74 West

Photo E-75 Ground

SITE 08 - H08_50M

Photo E-76 North

Photo E-77 East

Photo E-78 South

Photo E-79 West

Photo E-80 Ground

SITE 09 – H09_0M

Photo E-81 North

Photo E-82 East

Photo E-83 South

Photo E-84 West

Photo E-85 Ground

SITE 09 - H09_50M

Photo E-86 North

Photo E-87 East

Photo E-88 South

Photo E-89 West

Photo E-90 Ground

SITE 10 – H10_0M

Photo E-91 North

Photo E-92 East

Photo E-93 South

Photo E-94 West

Photo E-95 Ground

SITE 10 - H10_50M

Photo E-96 North

Photo E-97 East

Photo E-98 South

Photo E-99 West

Photo E-100 Ground

SITE 11 – H11_0M

Photo E-101 North

Photo E-102 East

Photo E-103 South

Photo E-104 West

Photo E-105 Ground

SITE 11 – H11_50M

Photo E-106 North

Photo E-107 East

Photo E-108 South

Photo E-109 West

Photo E-110 Ground

SITE 12 – H12_0M

Photo E-111 North

Photo E-112 East

Photo E-113 South

Photo E-114 West

Photo E-115 Ground

SITE 12 – H12_50M

Photo E-116 North

Photo E-117 East

Photo E-118 South

Photo E-119 West

Photo E-120 Ground

SITE 13 – H13_0M

Photo E-121 North

Photo E-122 East

Photo E-123 South

Photo E-124 West

Photo E-125 Ground

SITE 13 – H13_50M

Photo E-126 North

Photo E-127 East

Photo E-128 South

Photo E-129 West

Photo E-130 Ground

SITE 14 – W14_0

Photo E-131 North

Photo E-132 East

Photo E-133 South

Photo E-134 West

Photo E-135 Ground

SITE 15 – W15_0

Photo E-136 North

Photo E-137 East

Photo E-138 South

Photo E-139 West

Photo E-140 Ground

SITE 16 – W16_0

Photo E-141 North

Photo E-142 East

Photo E-143 South

Photo E-144 West

No photo available.

Biomass derived from north, east, south and west photos

SITE 17 – W17_0

Photo E-146 North

Photo E-147 East

Photo E-148 South

Photo E-149 West

Photo E-150 Ground

SITE 18 – W18_0

Photo E-151 North

Photo E-152 East

Photo E-153 South

Photo E-154 West

Photo E-155 Ground

SITE 19 – W19_0

Photo E-156 North

Photo E-157 East

Photo E-158 South

Photo E-159 West

Photo E-160 Ground

SITE 20 - W20_0

Photo E-161 North

Photo E-162 East

Photo E-163 South

Photo E-164 West

Photo E-165 Ground

APPENDIX F LEXINGTON RAIL LOOP OFFSET SITE PHOTO MONITORING

SITE LEXRL01 – H01_0M

Photo F-1 North

Photo F-2 East

Photo F-3 South

Photo F-4 West

SITE LEXRL01 – H01_50M

Photo F-7 East

Photo F-8 South

Photo F-9 West

Photo F-10 Ground

SITE LEXRLO2 – HO2_OM

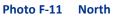


Photo F-12 East

Photo F-13 South

Photo F-14 West

Photo F-15 Ground

SITE LEXRLO2 – H02_50M

Photo F-16 North

Photo F-17 East

Photo F-18 South

Photo F-19 West

Photo F-20 Ground

SITE LEXRL03 – H03_0M

Photo F-21 North

Photo F-22 East

Photo F-23 South

Photo F-24 West

Photo F-25 Ground

SITE LEXRL03 – H03_50M

Photo F-26 North

Photo F-27 East

Photo F-28 South

Photo F-29 West

Photo F-30 Ground

SITE LEXRLO4 – H04_0M

Photo F-31 North

Photo F-32 East

Photo F-33 South

Photo F-34 West

Photo F-35 Ground

SITE LEXRL04 – H04_50M

Photo F-36 North

Photo F-37 East

Photo F-38 South

Photo F-39 West

Photo F-40 Ground

SITE LEXRL05 – H05_0M

Photo F-41 North

Photo F-42 East

Photo F-43 South

Photo F-44 West

Photo F-45 Ground

SITE LEXRL05 – H05_50M

Photo F-46 North

Photo F-47 East

Photo F-48 South

Photo F-49 West

Photo F-50 Ground

SITE LEXRLO6 – H06_0M

Photo F-51 North

Photo F-52 East

Photo F-53 South

Photo F-54 West

Photo F-55 Ground

SITE LEXRLO6 – H06_50M

Photo F-56 North

Photo F-57 East

Photo F-58 South

Photo F-59 West

Photo F-60 Ground

SITE LEXRL07 – H07_0M

Photo F-61 North

Photo F-62 East

Photo F-63 South

Photo F-64 West

Photo F-65 Ground

SITE LEXRL07 – H07_50M

Photo F-66 North

Photo F-67 East

Photo F-68 South

Photo F-69 West

Photo F-70 Ground

SITE LEXRL08 – W08_0

Photo F-71 North

Photo F-72 East

Photo F-73 South

Photo F-74 West

Photo F-75 Ground

SITE LEXRL09 – W09_0

Photo F-76 North

Photo F-77 East

Photo F-78 South

Photo F-79 West

Photo F-80 Ground

SITE LEXRL10 – W10_0

Photo F-81 North

Photo F-82 East

Photo F-83 South

Photo F-84 West

Photo F-85 Ground

SITE LEXRL11 – W11_0

Photo F-86 North

Photo F-87 East

Photo F-88 South

Photo F-89 West

Photo F-90 Ground

SITE LEXRL12 – W12_0

Photo F-91 North

Photo F-92 East

Photo F-93 South

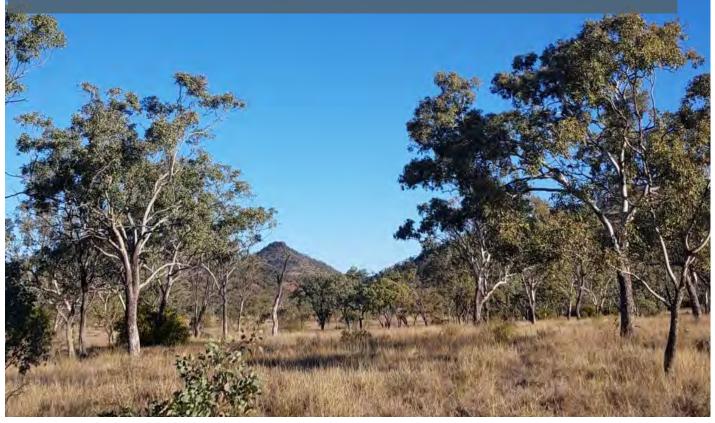
Photo F-94 West

Photo F-95 Ground

APPENDIX B POST-WET SEASON MONITORING REPORT (2020/21) (CO2 AUSTRALIA 2021)

Post-wet Season Monitoring Report (2020/21)

Year 4


- MDS Project site
- Lexington offset site

Year 2

- MDS Rail Loop site
- Lexington Rail Loop offset site

Meteor Downs South Coal Mine Project

Sojitz Blue Pty Ltd

Rev	Date	Description
0	4 June 2021	First draft issued to client
1	25 June 2021	Final report addressing client comments

	Name	Position	Date
ORIGINATORS	Dean Orrick Dr Jarrad Cousin	Ecologist Principal Ecologist	25 June 2021
APPROVER	Tara D'arcy-Evans	Head of Ecosystem Markets and Innovation	25 June 2021

Commercial in Confidence

This document is provided expressly subject to the terms of PO 27893 issued by Sojitz Coal Mining Pty Ltd (the 'Engagement' Agreement'). This advice is for the sole benefit of the Sojitz Coal Mining Pty Ltd. The information and opinions contained in this document are strictly confidential. Accordingly, the contents of this document or opinions subsequently supplied will constitute confidential information and may not, without the written consent of CO2 Australia, be published, reproduced, copied or disclosed to any person (other than your advisors having a need to know and who are aware that it is confidential), nor used for any purpose other than in connection with its intended use.

Disclaimer

The information in this document has not been independently verified as to its accuracy or completeness. This document is based on the information available at the time of preparation as well as certain assumptions. No representation or warranty, express or implied, is given by CO2 Australia or any of its directors, officers, affiliates, employees, advisers or agents (and any warranty expressed or implied by statute is hereby excluded (to the extent permitted by law)) as to the accuracy or completeness of the contents of this document or any other information supplied, or which may be supplied at any time or any opinions or projections expressed herein or therein, nor is any such party under any obligation to update this document or correct any inaccuracies or omissions in it which may exist or become apparent.

To the extent permitted by law, CO2 Australia limits its liability in accordance with the terms of the Engagement Agreement. Subject to the terms of the Engagement Agreement, no responsibility or liability is accepted for any loss or damage howsoever arising that you may suffer as a result of this document or reliance on the contents of this document and any and all responsibility and liability is expressly disclaimed (to the extent permitted by law) by CO2 Australia and any of its respective directors, partners, officers, affiliates, employees, advisers or agents.

Marketing

If, in any document or other communication to be made public or disclosed to a government agency, Sojitz Coal Mining Pty Ltd wishes to make reference to the use of CO2 Australia's services, consent must first be obtained, and this will not unreasonably be withheld.

Maps

The maps in this document are based on or contain data that has been provided by the State which gives no warranty in relation to the data (including accuracy, reliability, completeness or suitability) and accepts no liability (including without limitation, liability in negligence) for any loss, damage or costs (including consequential damage) relating to any use of the data.

CO2 Australia recognises the First Nations of Australia. We acknowledge the Traditional Custodians who have lived on and cared for Country, and their continuing connection to the land, and extend our respects to all First Nations Peoples.

CONTENTS

1	Intr	oduction	1
	1.1	MDS Project and corresponding offsets	1
	1.2	MDS Rail Loop and corresponding offsets	2
2	Me	thodology	5
	2.1	Monitoring locations	5
	2.2	King blue-grass and bluegrass surveys (MDS Project and MDS Rail Loop sites)	18
	2.3	Photo monitoring (MDS Rail Loop site and Lexington offset site)	20
	2.4	Biomass monitoring for fire management (All sites)	21
	2.5	General site inspections (All sites)	21
3	Res	ults: MDS Project site	22
	3.1	Habitat monitoring	22
	3.2	Photo monitoring	25
	3.3	Biomass monitoring	25
	3.4	General site inspection	26
4	Res	ults: MDS Rail Loop site	27
	4.1	Habitat monitoring	27
	4.2	Photo monitoring	29
	4.3	Biomass monitoring	29
	4.4	General site inspection	29
5	Res	ults: Lexington offset site	30
	5.1	Habitat monitoring	30
	5.2	Photo monitoring	33
	5.3	Biomass monitoring	33
	5.4	Significant species	34
	5.5	General site inspection	34
6	Res	ults: Lexington Rail Loop offset site	36
	6.1	Biomass monitoring	36
	6.2	General site inspection	36
7	Ref	erences	37

Appendix A	Monitoring site locations	A-1
Appendix B	MDS Rail Loop site – Year 2 habitat condition assessment	B-1
Appendix C	Lexington offset site – Year 4 habitat condition assessment	C-1
Appendix D	MDS Project site photo monitoring	D-1
Appendix E	MDS Rail Loop site photo monitoring	E-1
Appendix F	Lexington offset site photo monitoring	F-1
Appendix G	Lexington Rail Loop offset site photo monitoring	G-1

1 INTRODUCTION

U&D Mining Industry (Australia) Pty (U&D) has approval under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act) to develop and operate the Meteor Downs South (MDS) Coal Mine Project (the MDS Project) (Figure 1). U&D is in a joint venture with Sojitz Blue Pty Ltd (Sojitz Blue) to develop and operate the MDS Project.

1.1 MDS PROJECT AND CORRESPONDING OFFSETS

Under the Project EPBC Act approval (EPBC 2013/6779), the MDS Project has prepared the following documents:

- Matters of National Environmental Significance Management Plan (MNESMP)
 - to address EPBC 2013/6779 conditions 2, 3 and 4 with respect to the direct and indirect impacts of the MDS Project on matters of national environmental significance (MNES) at the MDS Project site
- Offset Management Plan (OMP)
 - to address EPBC 2013/6779 conditions 5 and 6 with respect to environmental offsets at the Lexington offset site (Figure 1) for significant residual impacts of the MDS Project on MNES and matters of state environmental significance (MSES)

The MNESMP and OMP outline annual biodiversity monitoring requirements at each site, as summarised in Table 1. The baseline (Year 1) management periods for the MDS Project site and the Lexington offset site are considered to be June 2017 – June 2018 (Project site) and October 2017 – October 2018 (Lexington offset site).

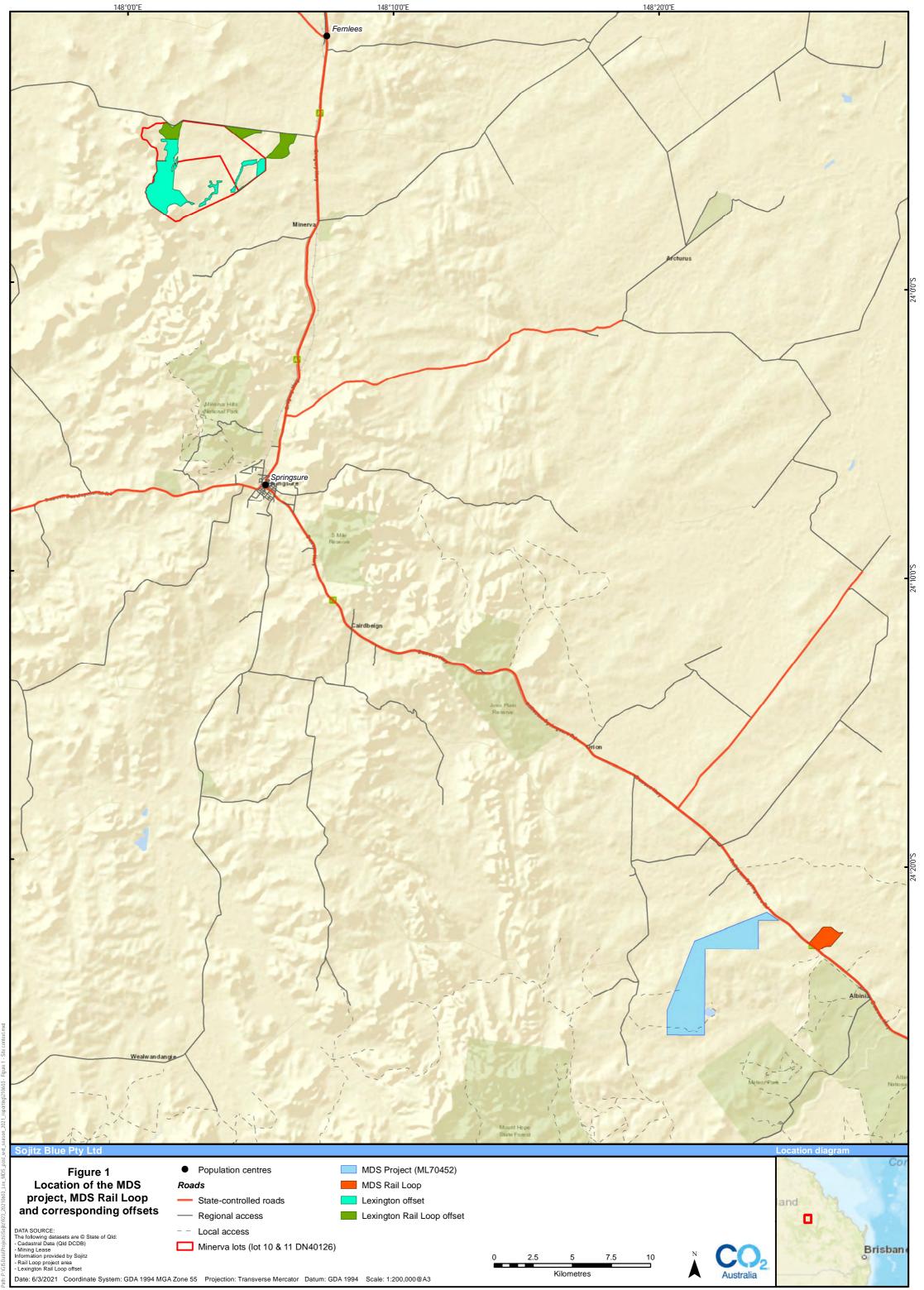
The current report includes the Year 4 (2020/2021) post-wet season monitoring report for the MDS Project site and the Lexington offset site.

Site	Monitoring activity	Management plan	Frequency	Timing	
	Habitat condition assessment	MNESMP Section 13.3	Annually	Dry season	
	Photo monitoring	MNESMP Section 13.4	Annually		
MDS Project	Targeted surveys for king blue-grass and bluegrass	MNESMP Section 13.5	Annually	End of the wet season and/or when most detectable	
site	Habitat availability assessment for Australian painted snipe	MNESMP Section 13.6	Every 2 years	Wet season or following inundation event	
	Pest animal monitoring	MNESMP Section 13.7	Every 2 years	Dry season and post-wet	
	Weed monitoring	MNESMP Section 13.8	Every 2 years	season	
	General offset site monitoring	OMP Section 7.1	Annual	Post-wet season	
Lexington offset site	Habitat condition assessment and photo monitoring	OMP Section 7.2	Every 2 years for first 10 years and then every 5 years thereafter until 31 October 2037	Post-wet season	

Site	Monitoring activity	Management plan	Frequency	Timing
	Weed monitoring	OMP Section 7.4	Every 2 years	Dry season and post-wet season
	Pest animal monitoring	OMP Section 7.5	Every 2 years (dry season and post wet season surveys)	Dry season and post-wet season
	Biomass monitoring	OMP Section 7.6	Annually	Post wet season prior to and during grazing events

1.2 MDS RAIL LOOP AND CORRESPONDING OFFSETS

In December 2019, Sojitz Blue received approval under the EPBC Act to develop and operate the Meteor Downs South Mine Rail Loop (MDS Rail Loop). Under the Project EPBC Act approval (EPBC 2019/8482), Sojitz Blue has prepared the following documents:


- Matters of National Environmental Significance Management Plan (Rail Loop MNESMP)
 - to address EPBC 2019/8482 condition 6 with respect to the direct and indirect impacts of the MDS Rail Loop project on matters of national environmental significance (MNES) at the MDS Rail Loop site
- Offset Management Plan (OMP)
 - to address EPBC 2019/8482 conditions 2, 3, 4 and 5 with respect to environmental offsets at the Lexington Rail Loop offset site (Figure 1) for significant residual impacts of the MDS Rail Loop on MNES.

The Rail Loop MNESMP and OMP outline annual biodiversity monitoring requirements at each site, as summarised in Table 2. This report incorporates the Year 2 (2020/2021) post-wet season monitoring report for both the MDS Rail Loop and the corresponding Lexington offset site.

Site	Monitoring activity	Management plan	Frequency	Timing
	General site inspection Rail Loop MNESMP Section 7.2		Biannually	End of the dry season and end of the wet season
	Habitat quality assessments and photo monitoring	Rail Loop MNESMP Section 7.3	Annually	Deskundensen
MDS Rail Loop site	Targeted surveys for king blue-grass	Rail Loop MNESMP Section 7.4	Annually	Post-wet season
	Weed monitoring	Rail Loop MNESMP Section 7.5	Biannually within habitat quality assessment plots Every 2 years at each of the weed monitoring plots	End of the dry season and post- wet season

Site Monitoring activity		Management plan	Frequency	Timing
	Biomass monitoring for fire management	Rail Loop MNESMP Section 7.6	Biannually	End of the dry season and end of the wet season
	General offset site monitoring	OMP Section 7.1	Annually	Post-wet season
	Habitat condition assessment and photo monitoring	OMP Section 7.2	Every 2 years for first 10 years and then every 5 years thereafter until 31 October 2039	Post-wet season
Lexington Rail Loop offset site	King blue-grass surveys	OMP Section 7.3	Every 5 years from baseline (2019)	End of the wet season and/or when most detectable
	Weed monitoring	OMP Section 7.4	Baseline in 2020 (Year 1), then every 2 years	Dry season and post-wet season
	Biomass monitoring	OMP Section 7.6	Annually	Post wet season prior to and during grazing events

2 METHODOLOGY

Field surveys were undertaken by two tertiary-qualified ecologists (Dean Orrick and Julian Radford-Smith) between 10 – 14 May 2021. Due to Covid-19 concerns, surveys were delayed beyond the optimal post-wet season survey period leading to drier than average conditions. It is acknowledged that surveying beyond the optimal post-wet season conditions has likely impacted the detectability of several grass species, including the EPBC-listed *Dichanthium queenslandicum* (king blue-grass) and *D. setosum* (bluegrass). Permanent monitoring sites were established at each site for the MDS Project and Lexington offset site as part of the baseline surveys carried out between December 2017 and April 2018, detailed in the following:

- MNESMP Baseline Monitoring Report Meteor Downs South Coal Mine Project. A report prepared by CO2 Australia in 2017 (CO2 Australia 2017) – baseline monitoring sites established in December 2017
- Lexington Offset Area Initial Baseline Monitoring Report Meteor Downs South. A report prepared by CO2 Australia in 2018 (CO2 Australia 2018) – baseline monitoring sites established in April 2018.

Permanent monitoring sites for the MDS Rail Loop and the Lexington Rail Loop offset were established as part of Year 1 surveys carried out during the post-wet season field surveys (June/July 2020), detailed in the following:

Post-wet Season Monitoring Report – Year 3 (2019/20). A report prepared by CO2 Australia in 2020 (CO2 Australia 2020) – baseline monitoring sites established in June 2020.

2.1 MONITORING LOCATIONS

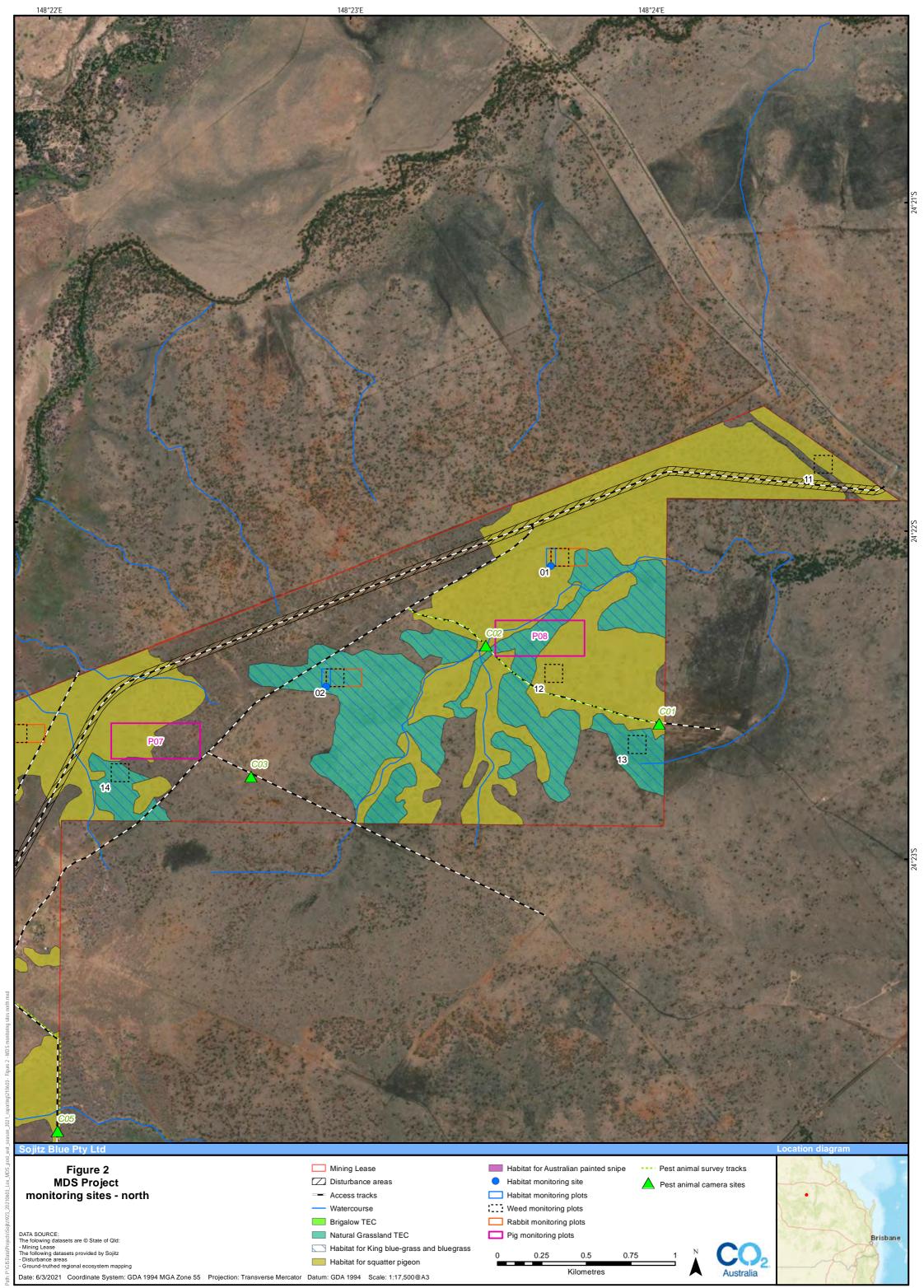
2.1.1 MDS Project site

Post-wet season monitoring activities at the MDS Project site comprised:

- General site inspection
- Targeted squatter pigeon surveys
- Targeted king blue-grass and bluegrass surveys
- Biomass monitoring

Table 3 shows activities at each monitoring location at the MDS Project site. A total of 30 permanent sites/plots were monitored across the balance of ML70452 outside of the MDS project (refer to Figure 2 and Figure 3). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 3), according to the following:

- 30 x biomass monitoring sites
 - established at 0 m and 50 m points along 100 m habitat monitoring transect (Sites 01 10) and at SW corner of weed monitoring plots (Sites 11 – 20)


At 10 of the biomass monitoring sites (Sites 01 - 10, corresponding to habitat monitoring sites), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m transect (equating to 20 of the 30 biomass monitoring sites). At each of the remaining 10 biomass monitoring sites (corresponding to standalone weed monitoring plots – Sites 11 - 20), a single 1.8 m capped galvanised star picket is installed at the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.

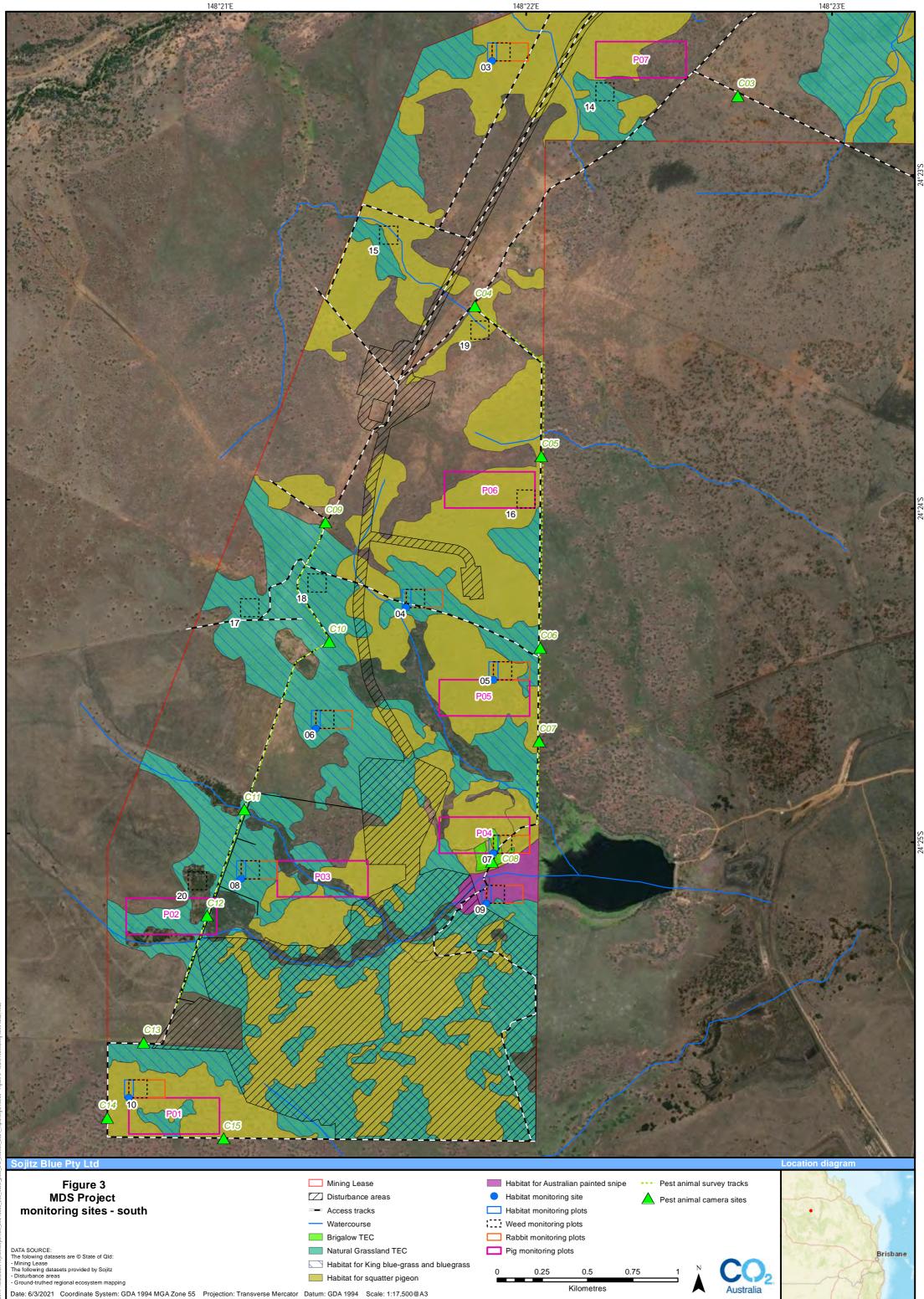

Refer to Table A-1 in Appendix A for detailed locations of each of the monitoring sites at the MDS Project site.

 Table 3: Monitoring locations at the MDS Project site, surveyed as part of the 2020/21 post-wet season surveys.

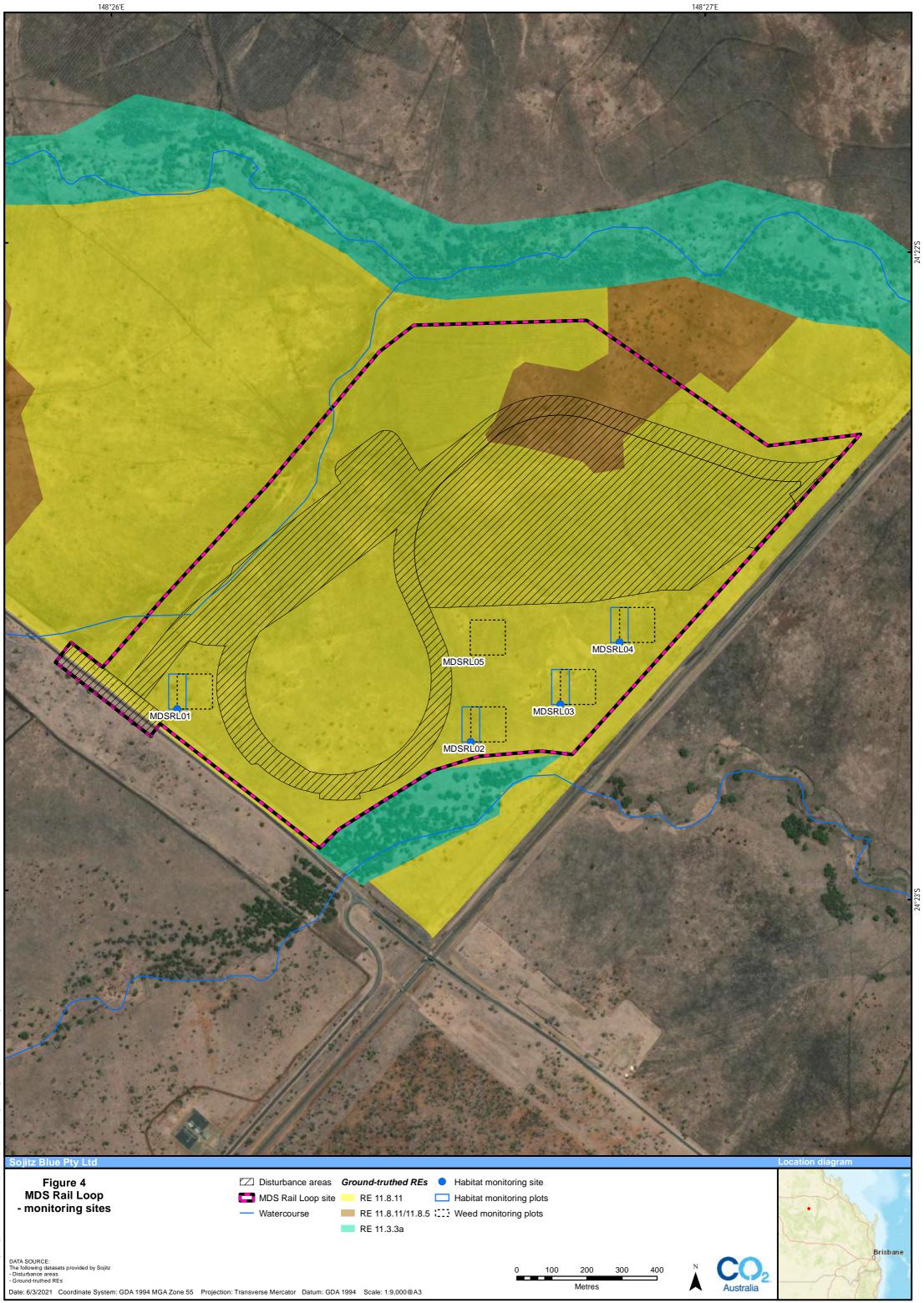
Site	King blue-grass and bluegrass	Biomass monitoring
01 – 20		×
Established grass transects	✓	

148°22'

2.1.2 MDS Rail Loop site

Post-wet season monitoring activities at the MDS Rail Loop site comprised monitoring of the following:

- General offset site monitoring
- Habitat quality assessments (including assessment of Natural Grassland thresholds)
- Photo monitoring
- Targeted king blue-grass surveys
- Biomass monitoring


Table 4 shows activities at each monitoring location established at the MDS Rail Loop site. A total of five permanent monitoring sites/plots are monitored (refer to Figure 4). While the Rail Loop MNESMP (SLR 2019a) stipulated one of the weed monitoring plots to be established in the *Leucaena* plantation, consultation with Sojitz Blue indicated the safety issues related to monitoring sites within the centre of the rail loop requiring crossing of the rail line. Instead, all plots were established on the outside of the rail loop (refer to Figure 4). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 4), according to the following:

- 4 x habitat quality assessment sites (50 m x 10 m)
 - collocated with weed monitoring plots, grassland assessment sites and king blue-grass survey sites (Sites MDSRL01 – MDSRL04)
- 4 x Natural Grasslands TEC monitoring sites (50 m x 20 m)
- collocated with habitat quality assessment sites, assessing Natural Grassland indicators (Sites MDSRL01 – MDSRL04)
- 4 x targeted King blue-grass surveys (50m x 10m)
 - collocated with habitat quality assessment plots and grassland assessment sites (Sites MDSRL01 MDSRL04)
- 9 x photo monitoring sites
 - established at 0 m and 50 m points along 50 m habitat monitoring transect (Sites MDSRL01 MDSRL04) and at SW corner of standalone weed monitoring plot (Site MDSRL05)
- 4 x biomass monitoring sites
 - assessed from the 50 m point of the habitat monitoring transect at each of the four habitat monitoring sites (Sites MDSRL01 – MDSRL04)

Table 4: Monitoring locations at the MDS Rail Loop site, surveyed as part of the 2020/21 post-wet season surveys.

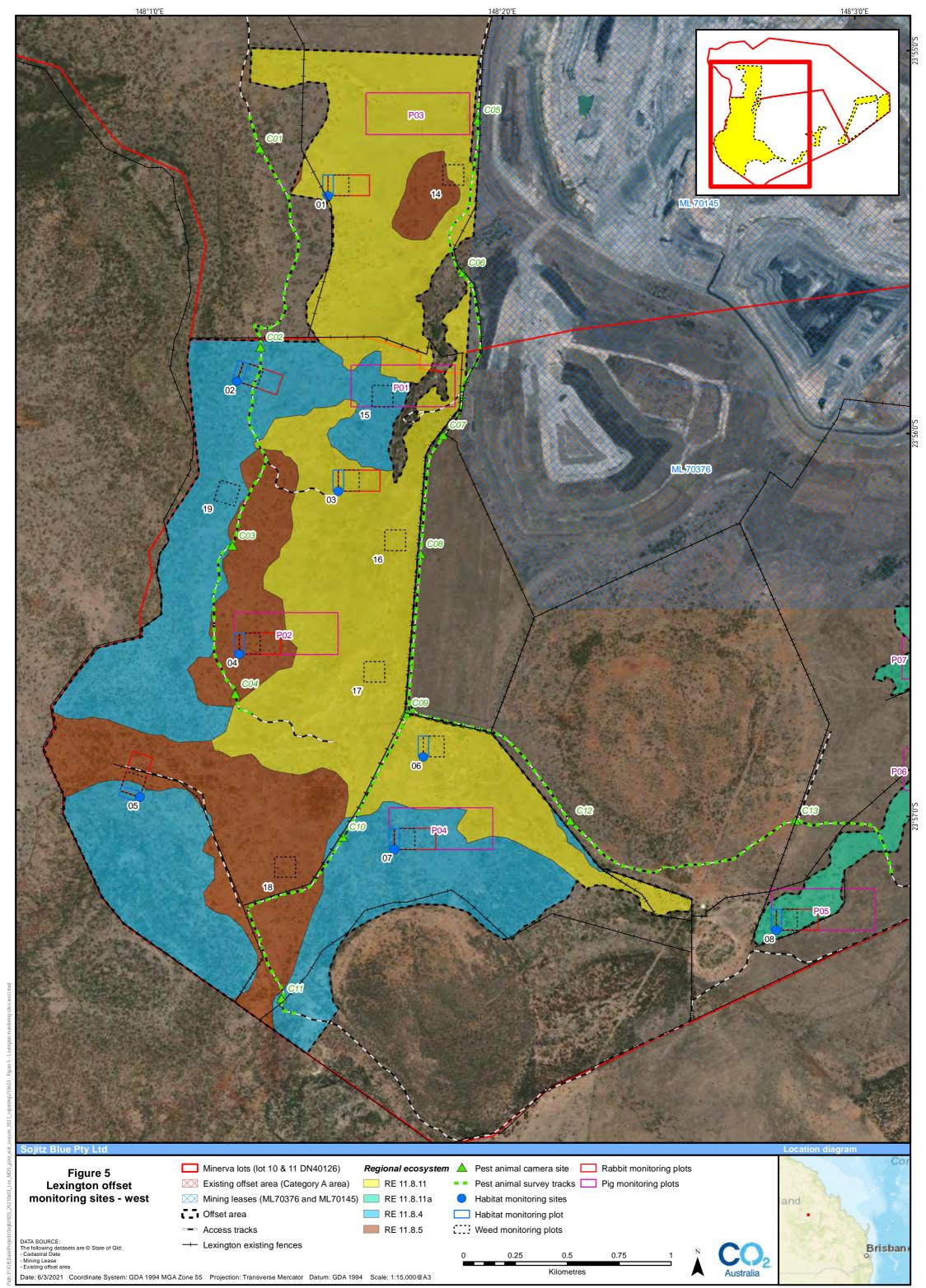
Site	Habitat quality assessment	Natural Grasslands TEC monitoring	King blue-grass surveys	Photo monitoring	Biomass monitoring
MDSRL01 – MDSRL04	✓	✓	~	~	√
MDSRL05				~	

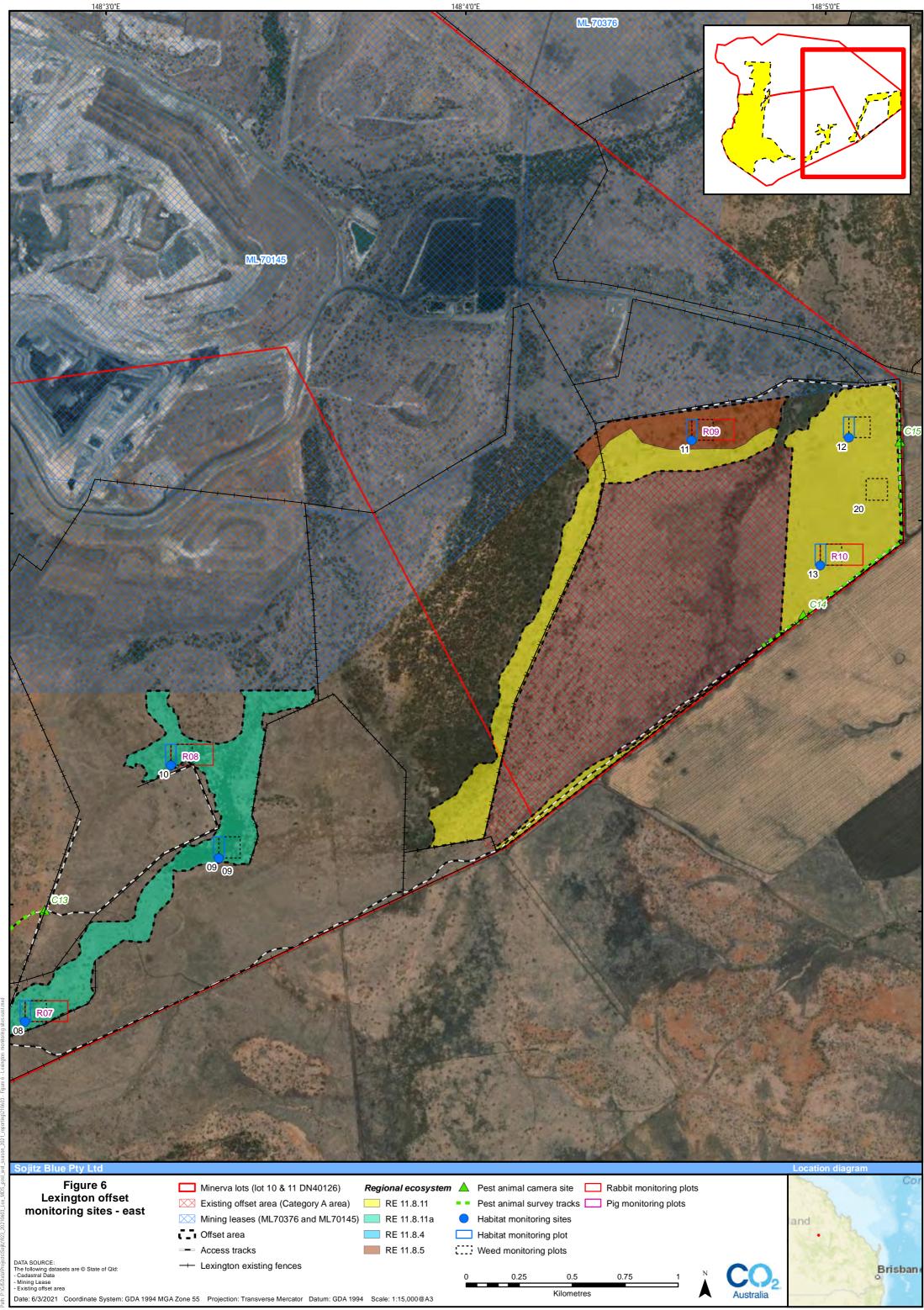
2.1.3 Lexington offset site

Post-wet season monitoring activities at the offset site comprised:

- General offset site monitoring
- Habitat condition assessments
- Photo monitoring
- Biomass monitoring

Table 5 shows activities at each monitoring location at the offset site. A total of 33 permanent monitoring sites/plots were monitored across the offset site (refer to Figure 5 and Figure 6). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 5), according to the following:


- 13 x habitat monitoring sites (100 m x 50 m)
 - collocated with weed and rabbit monitoring plots
- 33 x photo monitoring sites
 - 26 established at 0 m and 50 m points along 100 m habitat monitoring transect (Sites 01 13)
 - 7 at SW corner of standalone weed monitoring plots (Sites 14 20)


At each of the 13 habitat monitoring sites (Sites 01 - 13), a 1.8 m capped galvanised star picket is installed at the start (0 m) and central (50 m) points of the 100 m transect. At each of the standalone weed monitoring plots (Sites 14 - 20), a single 1.8 m capped galvanised star picket is installed at the SW corner of the plot. GPS locations are recorded for each of the sites in GDA94, Zone 55 projection.

Refer to Table A-2 in Appendix A for detailed locations of each of the monitoring sites at the Lexington offset site.

Site	Habitat condition assessments	Biomass monitoring	Photo monitoring
01 – 13	✓	\checkmark	✓
14 – 20		\checkmark	\checkmark

Table 5: Monitoring locations at the Lexington offset site, surveyed as part of the 2020/21 post-wet season surveys.

2.1.4 Lexington Rail Loop offset site

Post-wet season monitoring activities at the Lexington Rail Loop offset site comprised establishment and monitoring of the following:

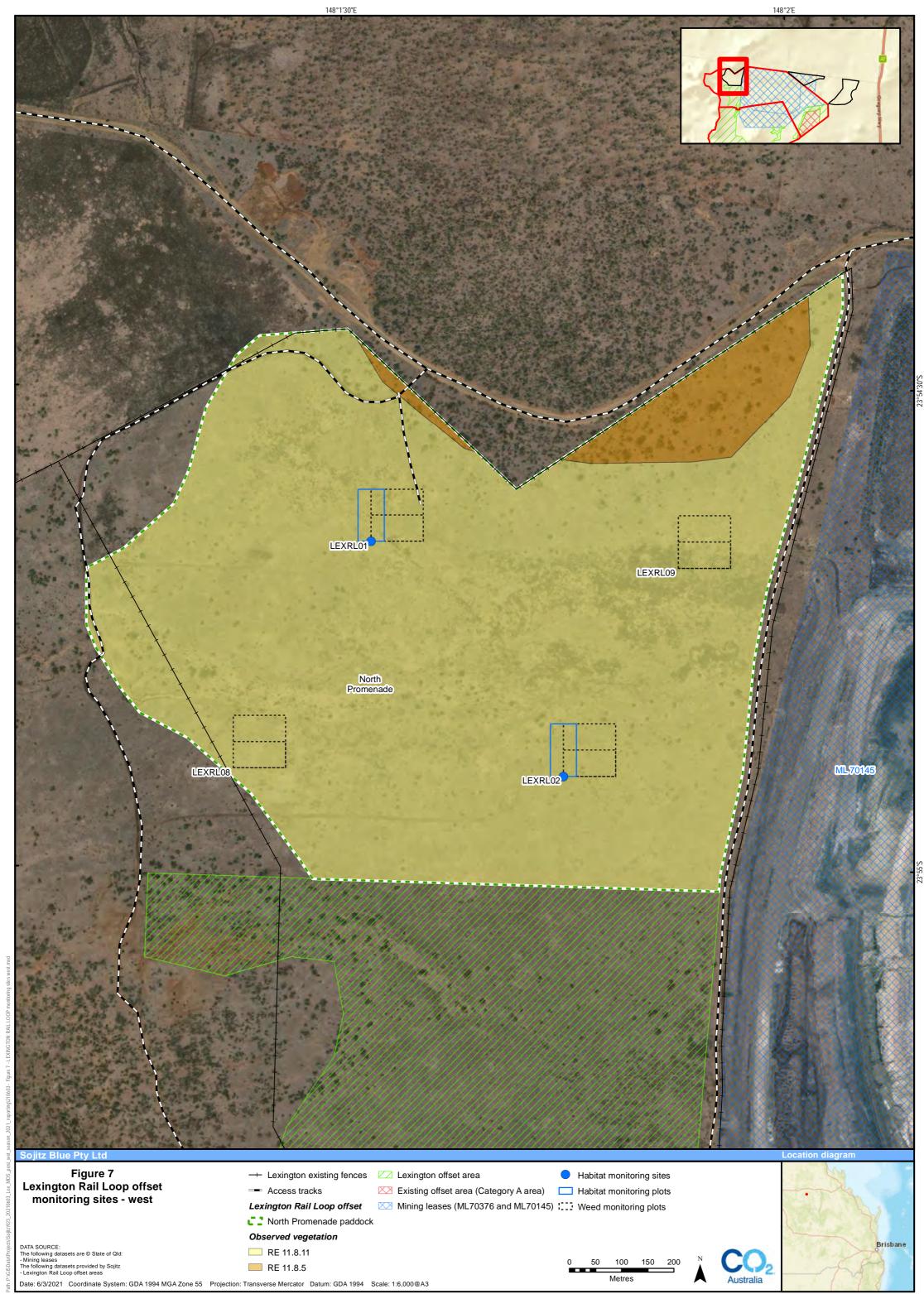

Biomass monitoring


Table 6 shows activities at each monitoring location established at the Lexington Rail Loop offset site; divided into three 'paddocks' across the north of Lexington – 'North Promenade', 'Harry's' and 'Contours'. A total of 12 permanent monitoring sites/plots are monitored across the three paddocks (refer to Figure 7 and Figure 8). Permanent monitoring sites comprised a mix of nested and non-nested sites (Table 6), according to the following:

- 19 x biomass monitoring sites
 - 14 established at 0 m and 50 m points along habitat monitoring transect (Sites LEXRL01 LEXRL07)
 - 5 at SW corner of standalone weed monitoring plots (Sites LEXRL08 LEXRL12)

Table 6: Monitoring locations at the Lexington Rail Loop offset site, surveyed as part of the 2020/21 post-wet season surveys.

Site	Biomass monitoring
North Promenade p	addock
LEXRL01 – LEXRL02	\checkmark
LEXRL08 – LEXRL09	\checkmark
Harry's paddock	
LEXRL03 – LEXRL04	✓
LEXRL10	\checkmark
Contours paddock	
LEXRL05 – LEXRL07	\checkmark
LEXRL11 – LEXRL12	\checkmark

2.2 KING BLUE-GRASS AND BLUEGRASS SURVEYS (MDS PROJECT AND MDS RAIL LOOP SITES)

2.2.1 MDS Project site

Targeted surveys were undertaken for king blue-grass and bluegrass throughout the MDS Project site. This included incidental surveys while traversing the site on foot (e.g. biomass monitoring) as well as targeted surveys along established transects previously surveyed in March 2018. The survey period was later than the typical flowering season for king blue-grass and bluegrass (during summer months), and as such fertile material can be absent from the two species making it difficult for them to be confidently discerned from other grass species with similar morphology (particularly superficially-similar *Dichanthium* and *Bothriochloa* species).

Targeted transect surveys were undertaken along 12 of the 25 transects previously surveyed in March 2018 and June 2020, including the four transects with previously confirmed king blue-grass records (Sites 12, 19, 22 and 25) and one transect with previously confirmed bluegrass records (Site 07). Sites traversed in May 2021 are listed in Table 7. Threatened grass surveys were undertaken targeting the presence, distribution and abundance of king blue-grass and bluegrass within 2 m of the centreline of the 12 transects.

Where king blue-grass or bluegrass was encountered within 2 m of the centreline of a transect, an estimate was made of the number of tussocks of each species considered to be within a contiguous population. A tussock was defined as a tuft or clump of a given species of grass growing from a common origin, whereas a population was defined as a collection of contiguous tussocks of a given species. The number of tussocks comprising a population was still estimated where populations extended beyond 2 m of the transect centreline. The number of tussocks in a population was estimated by assigning a population size to one of six abundance categories:

- ▶ 1 2 tussocks
- ≥2 5 tussocks
- ≥5 20 tussocks
- ≥20 50 tussocks
- ≥50 100 tussocks
- 100+ tussocks

An estimate of population size of a given species was calculated by summing the lower range interval of each population's tussock abundance category to represent the minimum estimate of abundance, with the upper range interval of each population's tussock abundance category summed to give an upper estimate of abundance. The resulting range represents a conservative estimate of tussock abundance across the survey area (i.e. survey area with four populations: 1-2 tussocks, 2-5 tussocks, 20-50 tussocks and 100+ tussocks equates to a survey area abundance range estimate of 123 – 157 tussocks from four populations). Based on the number of populations, a calculation was also made of the number of populations per kilometre of transect, which in combination with the estimate of total population size within the survey area allows for a comparison with monitoring events in subsequent years.

Transact	Sta	Start point		d point	Longth (m)
Transect	Easting	Northing	Easting	Northing	Length (m)
01	641808	7304281	641593	7304187	234
03	640538	7303712	640191	7303704	347
05	639101	7302831	638977	7303111	306
06	638306	7303321	638238	7303185	152
07	637991	7302726	637926	7302590	151
09	637222	7300744	637258	7300413	333
12	637935	7300289	638196	7300219	270
17	637148	7299183	637319	7299064	208
18	636979	7299062	636876	7298806	277
19	637123	7298983	637002	7298677	329
22	636545	7298529	636783	7298451	251
25	637273	7297385	637498	7297339	230
			·	Total	3,088

Table 7: Threatened grass survey transect locations (UTM coordinates in GDA94) and lengths for the 12 transects surveyed in May 2021.

2.2.2 MDS Rail Loop site

Targeted surveys for king blue-grass were undertaken within the 50 m x 10 m plot of each of the four habitat quality assessment sites (MDSRL01 – MDSRL02). As noted above, the survey period is later than the typical flowering season for king blue-grass and the species can be difficult to confidently discern from superficially-similar species. Where king blue-grass was encountered within the plot, an estimate was made of the number of tussocks considered to be within a contiguous population in accordance with the method outlined above (Section 2.2.1).

2.2.3 Habitat condition assessment (MDS Rail Loop and Lexington offset site)

Habitat condition assessment sites were established at the MDS Rail Loop site and Lexington Rail Loop offset sites based on the requirements of the *Guide to determining terrestrial habitat quality* (DEHP 2017). A total of four habitat condition assessment sites were established at the MDS Rail Loop site, with seven habitat condition assessment sites established at the Lexington Rail Loop offset site. Each of the habitat condition assessment sites comprise N – S running 100 m x 50 m transects, with the start (0 m) and central (50 m) points marked with a 1.8 m galvanised steel picket with plastic safety cap (refer to Figure 4, Figure 5 and Figure 6).

Habitat condition assessments for Natural Grasslands TEC and king blue-grass were undertaken at the habitat condition assessment sites generally in accordance with the *Guide to determining terrestrial habitat quality* (DEHP 2017). Through the application of the guide, a habitat quality score was calculated for each MNES based on the following key indicators:

- site condition: a general condition assessment of vegetation compared to a benchmark
- site context: an analysis of the site in relation to the surrounding environment

Natural Grasslands TEC habitat condition was determined according to the approved Commonwealth listing advice (TSSC 2009). As per the listing advice, five condition thresholds were used to classify a patch of Natural Grasslands TEC into 'best quality' and 'good quality', which are defined in Table 8.

In the absence of the *Guide to determining terrestrial habitat quality* (DEHP 2017) including a species habitat index for flora species, the habitat condition scores for the MNES flora species (king blue-grass) included a species presence index out of three, whereby: 0 = absent/not confirmed, 2 = up to five tussocks confirmed, 2.5 = up to 20 tussocks confirmed, 3 = more than 20 tussocks confirmed. The habitat condition score for the king blue-grass was then calculated as a combination of site condition and site context for the RE assessment unit (representing 80% of the score), with species stocking rate converted to a score out of 10 and contributing 20%.

Table 8: Condition Classes for the Natural Grasslands of the Queensland Central Highlands and the Northern Fitzroy Basin Ecological Community (TSSC 2009).

	Best quality	Good quality
Patch size	At least 1ha; and	At least 5ha; and
Grasses	At least 4 native perennial grass species from the list of perennial native grass indicator species; and	At least 3 native perennial grass species from the list of perennial native grass indicator species; and
Tussock cover	At least 200 native grass tussocks; and	At least 200 native grass tussocks; and
Woody shrub ¹ cover	Total projected canopy cover of shrubs is less than 30%; and	Total projected canopy cover of shrubs is less than 50%; and
Introduced species	Perennial non-woody introduced species are less than 5% of the total projected perennial plant cover.	Perennial non-woody introduced species are less than 30% of the total projected perennial plant cover.

¹The shrub layer is typically absent. However, where shrubs are present, they are defined as woody plants, more than 0.5 m tall that occupy the mid vegetation layer. The upper, or tree canopy layer, also is typically absent but may comprise scattered trees to less than 10% projective crown cover.

Sampling should be based upon a quadrat size of 0.1ha (e.g. 50 m x 20 m) selected in an area with the most apparent native perennial grass species. Unless exceptional circumstances apply, to maximise the assessment of condition, sites must be assessed during a good season, two months after cessation of disturbance (fire/grazing/mowing/slashing) and within two months of effective rain.

2.3 PHOTO MONITORING (MDS RAIL LOOP SITE AND LEXINGTON OFFSET SITE)

Photo monitoring was undertaken at permanent sites established as part of baseline surveys on the MDS Rail Loop site and Lexington offset site to give a representative indication of cover and species composition (including weeds) for the general area and enable visual assessment of habitat changes over time. Photo monitoring sites were established with a 1.8 m galvanised steel picket with plastic safety cap.

At each of the photo monitoring points, five photos were taken from 1.5 m height above ground level looking north, east, south and west with a ground photo taken looking down at an angle of 45° to the northwest of the star picket. Photo monitoring sites were delineated as follows:

At the MDS Rail Loop site, photo monitoring was undertaken at nine sites, including two at each of the four habitat quality assessment sites (0 m and 50 m points: Site MDSRL01 – MDSRL04), with single photo monitoring point at the SW corner of the remaining one standalone weed monitoring plot (Site MDSRL05) identified in Table 4 and shown in Figure 4

At the Lexington offset site, photo monitoring was undertaken at 33 sites, including two at each of the 13 habitat condition assessment sites (0 m and 50 m points: Site 01 – 13), with single photo monitoring points at the SW corner of the remaining seven weed monitoring plots (Site 14 – 20) identified in Table 5 and shown in Figure 5 and Figure 6

A record of the photographs is shown in Appendix D to Appendix G for the MDS Project, Lexington offset, MDS Rail Loop and Lexington Rail Loop offset sites, respectively.

2.4 BIOMASS MONITORING FOR FIRE MANAGEMENT (ALL SITES)

Biomass monitoring for fire management is undertaken annually to determine the risk of fire and to inform fire management strategies. Biomass is at its greatest at the end of the wet season (around April) with fire risk greatest towards the end of the dry season (September/October). Biomass is monitored using appropriate photo standards¹ to determine dry matter yields and subsequently fuel loads. Biomass monitoring is undertaken at permanent weed monitoring sites at the MDS Project site, MDS Rail Loop site, Lexington offset site and Lexington Rail Loop offset site.

2.5 GENERAL SITE INSPECTIONS (ALL SITES)

General site inspections across all project and offset sites was undertaken, to assess:

- Observations of fencing condition, including any repair/upgrades
- Access track conditions, including location of watercourse crossings, grids, erosion, etc
- Fire management, including assessment of existing firebreaks, access tracks and roads, fuel loads, and any recent burning activities
- Livestock management including assessment of signs of land degradation and over-grazing
- Erosion management, including assessment of the incidence of erosion, especially around permanent and semi-permanent water bodies or areas subject to inundation or waterlogging
- Incidental fauna observations, including presence, traces and/or abundance of pest animals
- Signs of dust deposition on vegetation located adjacent to the MDS Project and MDS Rail Loop footprints
- Locations of known king blue-grass and bluegrass specimens throughout all sites
- Any additional risks to fauna (i.e. evidence of vehicle strike)

¹ See https://futurebeef.com.au/knowledge-centre/pastures-forage-crops/pasture-photo-standards/

3 RESULTS: MDS PROJECT SITE

3.1 HABITAT MONITORING

Habitat condition assessments were undertaken in October as part of the 2020 dry-season surveys and were previously reported. Post-wet season, targeted surveys were undertaken for king blue-grass bluegrass and squatter pigeon; the results for which are described below.

3.1.1 King blue-grass and bluegrass

Targeted surveys confirmed the presence of king blue-grass at transects throughout the MDS Project site. Bluegrass was unable to be positively identified due to sub-optimal conditions for detection. Records of king blue-grass were confirmed from two (17%) of the 12 threatened grass survey transects (transects 22 and 25) (Table 9 and Figure 9), with no incidentally recorded populations detected. Two populations of king bluegrass were recorded along transect 25 (totalling 25-70 tussocks), compared with eight populations recorded in 2020. A single population was identified from transect 22, represented by 2-5 tussocks. The paucity of records during this 2021 post-wet season survey compared with previous surveys is likely a consequence of reduced detectability rather than a reduction (or otherwise) of king blue-grass and bluegrass throughout the MDS Project site.

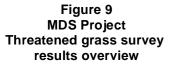
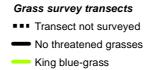

Transect number	King blue-grass population size range Population per transect		
22	2-5		2-5
25	5-20 20-50		25-70
Total survey area population (range)	27-75		
Number of populations (#/km)	3 (0.97/km)		

Table 9: King blue-grass populations and their estimated size from transects at the MDS Project site in May 2021.

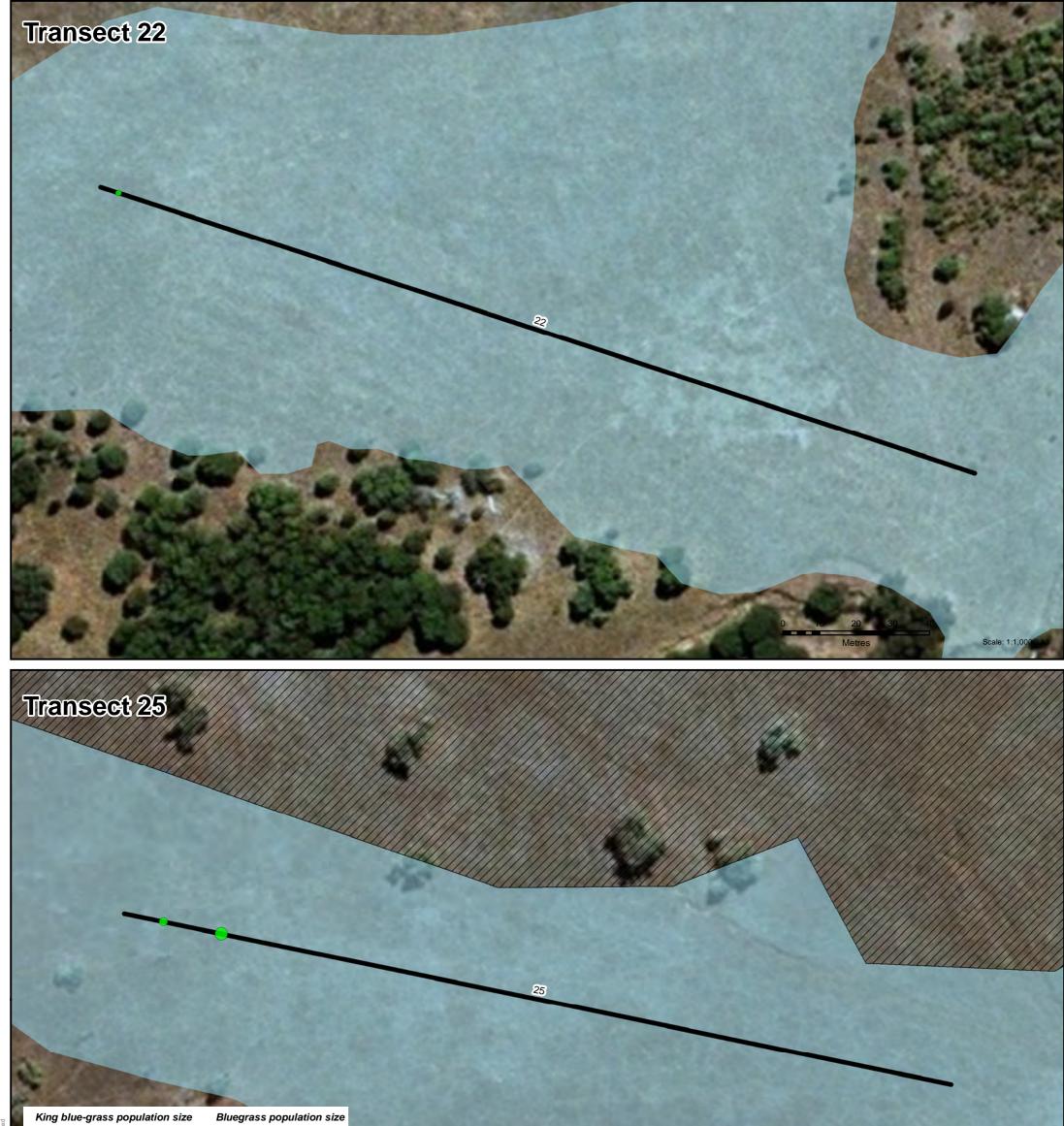
Records of bluegrass were not able to be detected from any of the 12 threatened grass survey transects, nor incidentally throughout the site (Figure 9 and Figure 10).


DATA SOURCE: The folowing datasets are © State of Qld: - Mining Lease The following datasets provided by Sojitz - Disturbance areas - Habitat for king blue-grass and bluegrass

- Access tracks

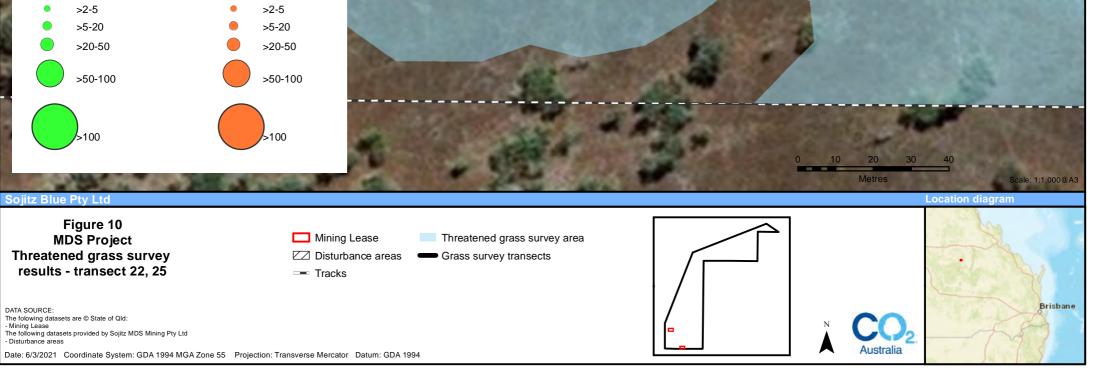
Habitat for King blue-grass and bluegrass

CC Threatened grass survey area



- Bluegrass

0.25 0.5 0.75 0 Kilometres



Date: 6/3/2021 Coordinate System: GDA 1994 MGA Zone 55 Projection: Transverse Mercator Datum: GDA 1994 Scale: 1:27,500@A3

1-2 •

1-2 •

3.1.2 Squatter pigeon

Incidental searches for the squatter pigeon were conducted opportunistically from over 130 km of driving during the two days of field surveys on the project site, however, no squatter pigeons were recorded.

3.2 PHOTO MONITORING

Photo monitoring of the MDS Project site showed a variety of levels of cover ranging from dense grassy understorey (Site 05: refer to Photo D-43 in Appendix D) through to relatively open areas with evidence of grazing (occasionally overgrazed; see Site 17: Photo D-131 in Appendix D) resulting in reduced grass cover. The results of the photo monitoring in the MDS Project site is presented in Appendix D.

3.3 BIOMASS MONITORING

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring sites comprising RE 11.8.11, whilst biomass monitoring results from areas of RE 11.8.5 were assessed against 'Eucalypt woodlands', RE 11.4.3 was assessed against 'Bluegrass, wiregrass', and RE 11.3.3a was assessed against 'Alluvial' photo standards (Table 10). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 2,500 kg/ha and 3,600 kg/ha 'Eucalypt woodlands' photo standards was reported as 3,050 kg/ha).

Photo monitoring showed some variability in biomass of ground cover across all 10 photo monitoring sites. Sites in RE 11.8.11 supported the greatest biomass (averaging 3,978 kg/ha), with Site 03 (RE 11.8.5) supporting the lowest biomass (1,800 kg/ha) (Table 10). Areas of RE 11.8.5 supported mostly ≥2,500 kg/ha (except for site 03), averaging 2,875 kg/ha, the one RE 11.3.3a photo monitoring site supported 3,405 kg/ha biomass and the one RE 11.4.3 supported 2,230 kg/ha.

		Brigalow Bel	lt Future Beef	pasture photo s	tandard type	
Photo monitoring site*	RE type	Eucalypt woodlands	Blue grass, wire grass	Alluvial	Downs country	Biomass kg/ha
01	11.8.5	\checkmark				3,050
02	11.8.11				✓	4,445
03	11.8.5	✓				1,800
04	11.8.11				✓	4,445
05	11.8.5	✓				3,050
06	11.8.11				✓	2,575
07	11.4.3		×			2,230
08	11.8.11				✓	4,445
09	11.3.3a			✓		3,405
10	11.8.5	\checkmark				3,600

Table 10: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture photo standards.

* taken from the 0 m point of the permanent habitat monitoring transects.

3.4 GENERAL SITE INSPECTION

The condition of fencing and access gates across the MDS site was good, with no requirement for repair at the time of surveying. Existing access tracks, including firebreaks, were of a similar standard having recently been re-graded.

Field traverses in the south-west of the MDS Project site noted areas of RE 11.8.11a under stress, noted in previous monitoring periods. These areas are characterised by areas of dieback of *Melaleuca bracteata*, with little improvement. Notwithstanding, it was noted that much of this vegetation community was continuing to show evidence of epicormic regrowth. It is therefore likely that this vegetation community is in a state of recovery following the drought prior to the 2019/2020 wet season. The condition of these communities will need to continue to be monitored to exclude alternative reasons for the dieback (e.g. whether a consequence of hydrological changes).

Site assessments revealed that some areas in the west of the ML (near site 17) showed evidence of grazing pressure (e.g. reduced grass height, bare soil areas). These areas will require ongoing monitoring to ensure they recover adequately. Notwithstanding, it is acknowledged that MDS is responsible for the management of activities within the MDS Project site only and does not have any responsibility for grazing regimes in the mining lease area that is outside of the MDS Project site.

Site traverses as part of all monitoring activities on the MDS Project site showed no obvious evidence of any dust deposition, nor any impacts attributable to dust deposition on king blue-grass, bluegrass or other vegetation communities. Approximately 1 ha of cleared grassland (consistent with RE 11.8.11) was observed in the east of ML70452 associated with the mine's explosives cache. The area of clearing intersects a grass survey transect (site 12) where king blue-grass has previously been recorded.

Note that RE 11.8.11a is no longer a recognised regional ecosystem since the release of version 12 of the Regional Ecosystem Description Database (REDD) in March 2021 (Queensland Herbarium 2021). Instead all areas of RE 11.8.11a are now recognised as RE 11.3.25d. This constitutes not only a change in RE, but a change in landzone. Notwithstanding, all mention of RE 11.8.11a will continue given historical approval incorporating this regional ecosystem.

4 RESULTS: MDS RAIL LOOP SITE

4.1 HABITAT MONITORING

Results of habitat condition assessments identified an average site condition score of 5.17 out of 10 across all four habitat monitoring sites, with scores ranging between 3.17 (Site MDSRL04) and 6.17 (Site MDSRL02). Site context scores varied from 8.85 out of 10 (MDSRL02, MDSRL03 and MDSRL04) up to 10 out of 10 (MDSRL01). Site condition scores are lower than previous years, likely attributable to greater overall weed cover. However, it should be noted that the timing of the surveys, later in the post-wet season, may have resulted in reduced species richness and perennial grass cover, resulting in reduced habitat condition scores. Appendix B outline details of the site condition assessments, summarised below in Table 11.

 Table 11: MDS Rail Loop site habitat monitoring sites: site condition and site context scores calculated in accordance with the Guide to determining terrestrial habitat quality (DEHP 2017).

Site	RE	Easting	Northing	Site condition score (/10)	Site context score (/10)
MDSRL01	11.8.11	645575	7303101	5.67	10.00
MDSRL02	11.8.11	646410	7303007	6.17	8.85
MDSRL03	11.8.11	646666	7303114	5.67	8.85
MDSRL04	11.8.11	646834	7303291	4.17	8.85
			Average score	5.42	9.13

MNES habitat condition assessments

Based on the results of the site condition and assessments, habitat condition scores for the two MNES averaged 7.14 out of 10 for Natural Grasslands TEC and 5.71 out of 10 for king blue-grass (Table 12). King blue-grass had the lower score of the two MNES (5.71) on account of the absence of any confirmed king-blue grass tussocks within the surveyed plots at the time of surveying. (refer to Appendix B for site condition raw data contributing to site condition score).

Site	RE	Natural Grasslands TEC	King blue- grass
MDSRL01	11.8.11	7.68	6.14
MDSRL 02	11.8.11	7.41	5.93
MDSRL 03	11.8.11	7.14	5.71
MDSRL 04	11.8.11	6.34	5.07
	Average score	7.14	5.71

Table 12: MDS Rail Loop site monitoring sites showing their habitat condition scores contributing to MNES.

Natural Grasslands habitat

Natural Grasslands TEC habitat condition scores for the four habitat monitoring sites ranged between 6.34 and 7.68 (Table 12). The four assessment sites supported between five and six TEC indicator grass species

(Table 13). While additional species are likely to have been present, some individuals could not be identified to species level primarily as a consequence of the lack of fertile material.

Scientific name	Common name	MDSRL01 RE 11.8.11	MDSRL02 RE 11.8.11	MDSRL03 RE 11.8.11	MDSRL04 RE 11.8.11
Aristida latifolia	Feather-top wiregrass	~	\checkmark	\checkmark	\checkmark
Aristida leptopoda	White speargrass	\checkmark	\checkmark	\checkmark	\checkmark
Astrebla elymoides	Hoop mitchell grass				
Astrebla lappacea	Curly mitchell grass				
Astrebla squarrosa	Bull mitchell grass				
Bothriochloa erianthoides	Satin-top grass	✓	✓	✓	✓
Dichanthium queenslandicum	King blue-grass				
Dichanthium sericeum	Queensland bluegrass	✓	✓	✓	✓
Eriochloa crebra	Cup grass				✓
Panicum decompositum	Native millet	✓	✓	✓	✓
Panicum queenslandicum	Yabila grass				
Paspalidium globoideum	Shot grass				
Thellungia advena	Coolibah grass				
	TOTAL	5	5	5	6

Table 13: Natural Grasslands TEC indicator species at the MDS Rail Loop site.

Natural Grassland quality assessments were conducted at each of the four habitat condition sites within a 50 m x 20 m plot. This included an assessment of the species richness of Natural Grassland TEC indicator species, density of grass tussocks, shrub cover and non-native plant cover as per the approved Commonwealth listing advice (TSSC 2009) (Table 8). The results of this assessment (Table 14) indicated that two of the condition sites (MDSRL02 and MDSRL03) were only in 'good' condition, with the remaining two sites (MDSRL01 and MDSRL04) being less than 'good' condition which is attributed to the high weed cover in these plots, particularly Melinis repens, *Setaria incrassata* and *Physalis lanceifolia*. According to the approved Commonwealth listing advice (TSSC 2009), MDSRL01 and MDSRL04 do not meet the criteria for 'good' or 'best' condition class on account of both sites having weed cover > 30%.

Table 14: Condition classes for the Natural Grasslands TEC

TEC quality criteria	MDSRL01 RE 11.8.11	MDSRL02 RE 11.8.11	MDSRL03 RE 11.8.11	MDSRL04 RE 11.8.11
Perennial indicator grass species	5	5	5	6
Number of native grass tussocks	>200	>200	>200	>200
Woody shrub canopy cover (%)	<5	<5	<5	<5
Perennial non-native plant cover (%)	35.7	12.8	19.45	41.85
Condition class	-	Good	Good	-

King blue-grass habitat

King blue-grass habitat condition scores for the four habitat monitoring sites ranged between 5.07 and 6.14 (Table 12). No King-blue grass were positively identified from the four habitat condition assessment plots at the time of surveying, accounting for the lower MNES habitat condition score compared with Natural Grassland TEC scores.

4.2 PHOTO MONITORING

Photo monitoring of the MDS Rail Loop site showed relatively consistent levels of biomass, characterised by a moderate grass cover. Whereas many areas of comparable RE 11.8.11 on the MDS project site showed dense grass cover, the MDS Rail Loop site was not consistent with this, despite being represented by the same vegetation community. This is likely a consequence of historical disturbance, with the current condition an indication that the site is in a state of recovery. Ongoing management and concurrent photo monitoring should detect that change over time, as the grassland continues to recover. The results of the photo monitoring in the MDS Rail Loop site is presented in Appendix E.

4.3 **BIOMASS MONITORING**

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring all four of the sites comprising RE 11.8.11 (Table 15). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 3,015 kg/ha and 3,850 kg/ha 'Downs country' photo standards was reported as 3,433 kg/ha).

Photo monitoring showed limited variability in biomass of ground cover across all four photo monitoring sites. Overall, there was a moderate biomass for the vegetation type, with a biomass ranging between 3,015 kg/ha and 4,445 kg/ha.

		Brigalow Belt Future Beef pasture photo standard type	
Photo monitoring site*	RE type	Downs country	Biomass kg/ha
MDSRL01	11.8.11	✓	3,850
MDSRL02	11.8.11	\checkmark	3,015
MDSRL03	11.8.11	\checkmark	3,015
MDSRL04	11.8.11	✓	4,445

Table 15: Results of biomass monitoring on the MDS Project site using Brigalow Belt Future Beef pasture photo
standards.

* taken from the 50 m point of the permanent habitat monitoring transect.

4.4 GENERAL SITE INSPECTION

Construction of the MDS Rail Loop was complete at the time of the 2021 wet season survey. No development was observed outside of the extent of disturbance, and no rubbish or other matters likely to impact on the monitoring area was observed. This included no evidence of dust or other particulate material on the vegetation within the MDS Rail Loop monitoring area. It is noted that BioCondition weed cover estimates appear to be higher than previous surveys at most sites, particularly at site 04 which is adjacent to the Dawson Highway. Non-native grass species form the majority of weed incursion in the MDS Rail Loop site Natural Grasslands TEC.

5 RESULTS: LEXINGTON OFFSET SITE

5.1 HABITAT MONITORING

Results of habitat condition assessments identified an average site condition score of 6.58 out of 10 across all 13 habitat monitoring sites, with scores ranging between 4.00 (Site LEX01) and 8.00 (Site LEX13). Site context scores varied from 2.69 out of 10 (LEX08 – LEX11) up to 10 out of 10 (LEX01 – LEX07). Appendix C outlines details of the site condition assessments, summarised below in Table 16.

Table 16: Lexington offset site habitat monitoring sites: site condition and site context scores calculated in accordance with the *Guide to determining terrestrial habitat quality* (DEHP 2017).

Site	RE	Easting	Northing	Site condition score (/10)	Site context score (/10)
LEX01	11.8.11	604331	7353900	4.00	10.00
LEX02	11.8.4	603892	7353005	7.75	10.00
LEX03	11.8.11	604380	7352477	7.33	10.00
LEX04	11.8.5	603904	7351691	6.75	10.00
LEX05	11.8.4	603426	7351001	5.50	10.00
LEX06	11.8.11	604789	7351195	5.00	10.00
LEX07	11.8.4	604649	7350750	7.75	10.00
LEX08	11.8.11a	606488	7350361	6.88	2.69
LEX09	11.8.11a	607401	7351133	7.13	2.69
LEX10	11.8.11a	607175	7351571	5.75	2.69
LEX11	11.8.5	609631	7353104	6.69	7.69
LEX12	11.8.11	610371	7353117	7.00	7.31
LEX13	11.8.11	610237	7352515	8.00	7.31
			Average score	6.58	7.72

MNES/MSES habitat condition assessments

Based on the results of the site condition assessments, habitat condition scores for the eight MNES/MSES ranged between 5.00 (of concern 11.8.11a and watercourse 11.8.11a) and 8.57 (Natural Grasslands TEC) out of 10 (Table 17). The comparatively low score for of concern 11.8.11a is in part attributable to a high percentage of non-native plant cover, but also the low connectivity afforded by the surrounding area. In contrast, Natural Grasslands TEC had the highest habitat score (8.57) at LEX03, attributable in large part to the species richness for grasses and non-native plant cover being equal to and greater than benchmark condition, respectively, as well as a perfect site context score of 10.00. (refer to Appendix C for site condition raw data).

Site	RE	Natural Grasslands TEC	King blue-grass	Blue grass	Squatter pigeon	Watercourse 11.8.5	Watercourse 11.8.11	Watercourse 11.8.11a	Of Concern 11.8.11a
LEX01	11.8.11	6.79	5.43	5.43					
LEX02	11.8.4				7.95				
LEX03	11.8.11	8.57	6.86	6.86					
LEX04	11.8.5				7.44	7.55			
LEX05	11.8.4				6.47				
LEX06	11.8.11	7.32	5.86	5.86			7.32		
LEX 07	11.8.4				7.63				
LEX 08	11.8.11a								5.85
LEX 09	11.8.11a							6.04	6.04
LEX 10	11.8.11a							5.00	5.00
LEX 11	11.8.5				6.70				
LEX 12	11.8.11	7.14	5.71	5.71					
LEX 13	11.8.11	7.68	6.14	6.14					

Table 17: Lexington offset site monitoring sites showing their habitat condition scores contributing to MNES.

Natural Grasslands habitat

Natural Grasslands TEC habitat condition scores for the five of concern RE 11.8.11 habitat monitoring sites ranged between 6.79 and 8.57 (Table 18). The five assessment sites supported between four and seven TEC indicator grass species (Table 18). It is possible that additional Natural Grasslands TEC indicator species were present, however some individuals could not be identified to species level due to the dry conditions and as a consequence, lack of fertile material.

Scientific name	Common name	LEX01 RE 11.8.11	LEX03 RE 11.8.11	LEX06 RE 11.8.11	LEX012 RE 11.8.11	LEX013 RE 11.8.11
Aristida latifolia	Feather-top wiregrass	~	\checkmark			
Aristida leptopoda	White speargrass	×	✓	×	×	✓
Astrebla elymoides	Hoop mitchell grass					
Astrebla lappacea	Curly mitchell grass					
Astrebla squarrosa	Bull mitchell grass					
Bothriochloa erianthoides	Satin-top grass		\checkmark		\checkmark	✓
Dichanthium queenslandicum	King blue-grass					

Scientific name	Common name	LEX01 RE 11.8.11	LEX03 RE 11.8.11	LEX06 RE 11.8.11	LEX012 RE 11.8.11	LEX013 RE 11.8.11
Dichanthium sericeum	Queensland bluegrass	\checkmark	~	\checkmark	\checkmark	~
Eriochloa crebra	Cup grass					
Panicum decompositum	Native millet	✓	✓	✓	✓	✓
Panicum queenslandicum	Yabila grass			✓	✓	✓
Paspalidium globoideum	Shot grass		✓	✓		✓
Thellungia advena	Coolibah grass		✓	✓	✓	
	TOTAL	4	7	6	6	6

Natural Grassland TEC habitat quality assessments were conducted at each of the five habitat monitoring sites within a 50 m x 20 m plot. This included an assessment of the species richness of Natural Grassland TEC indicator species, density of grass tussocks, shrub cover and non-native plant cover, as per the criteria listed in the approved Commonwealth listing advice (TSSC 2009). The results of this assessment (Table 19) indicated that two of the habitat monitoring sites (LEX03 and LEX13) were in 'best' condition, two sites (LEX06 and LEX12) were only in 'good' condition, and one site (LEX01) did not meet the threshold for 'best' or 'good' condition class as a consequence of a high weed cover (51.9%), particularly of *Melinis repens*, *Cenchrus ciliaris* and *Parthenium hysterophorus*.

Table 19: Condition classes	for the Natural	Grasslands TEC
------------------------------------	-----------------	----------------

TEC quality criteria	LEX01 RE 11.8.11	LEX03 RE 11.8.11	LEX06 RE 11.8.11	LEX012 RE 11.8.11	LEX013 RE 11.8.11
Perennial indicator grass species	4	7	6	6	6
Number of native grass tussocks	>200	>200	>200	>200	>200
Woody shrub canopy cover (%)	<5	<5	<5	<5	<5
Perennial non- native plant cover (%)	51.9	2.1	11.15	10.3	1
Condition class	-	Best	Good	Good	Best

King blue-grass habitat

King blue-grass habitat condition scores for the five habitat monitoring sites ranged between 5.43 and 6.86 (Table 18). No King-blue grass were positively identified from the five habitat condition assessment plots at the time of surveying, accounting for the lower MNES habitat condition score compared with Natural Grassland TEC scores.

Squatter pigeon surveys

Targeted squatter pigeon surveys were undertaken generally in accordance with the Survey Guidelines for Australia's Threatened Birds (DEWHA 2010). In the absence of specific seasonally-enhanced detectability of squatter pigeon, surveying was conducted over 3 days. In accordance with previous experience in the Brigalow Belt (J. Cousin, pers comm.2016), squatter pigeon was passively surveyed by flushing them while traversing the offset site by vehicle (on formed tracks) and by foot; recording the number (and abundance) of squatter pigeon encounters during any survey event. Despite more than 80 km of travel on site, no squatter pigeon were confirmed as part of the post-wet season field surveys.

5.2 PHOTO MONITORING

Photo monitoring of the Lexington offset site showed a variety of levels of cover consistent within the varying vegetation communities. Photo monitoring in natural grassland areas (RE 11.8.11) ranged from a dense understorey in the eastern parts of the offset (Site 20: refer to Photo F-158 in Appendix F) through to relatively open areas with evidence of weeds in the western areas (Site 06: F-55 in Appendix F) resulting in reduced grass cover. Even in upslope areas characterised by shallower skeletal soils over basalt, there was still an appreciable grass cover for the vegetation type (Site 05: refer to Photo F-50 in Appendix F); likely indicative of a favourable wet season. The results of the photo monitoring in the Lexington offset site is presented in Appendix F.

5.3 BIOMASS MONITORING

5.3.1 Biomass monitoring for fire management

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for offset areas comprising of RE 11.8.11 and RE 11.8.11a, whilst photo monitoring results from areas of RE 11.8.4 and RE 11.8.5 were assessed against 'Narrow-leaved Ironbark' photo standards (Table 20).

Photo monitoring showed some variability in biomass of ground cover. Sites in RE 11.8.11 and 11.8.11a were all at least 2,140 kg/ha and up to 5,040 kg/ha (Site 20), while biomass in RE 11.8.4 and RE 11.8.5 ranged between 1,475 kg/ha (Site 02) and 5,000 kg/ha (Site 05), both in rockier upslope areas (Table 20).

Photo monitoring		Brigalow Belt pastu	Brigalow Belt pasture photo standard type			
site*	RE type	Narrow-leaved ironbark	Downs country	Biomass (kg/ha)		
01	11.8.11		\checkmark	3,015		
02	11.8.4	\checkmark		1,475		
03	11.8.11		✓	2,140		
04	11.8.5	\checkmark		2,000		
05	11.8.4	\checkmark		5,000		
06	11.8.11		\checkmark	2,578		
07	11.8.4	\checkmark		1,750		
08	11.8.11a		✓	3,015		
09	11.8.11a		✓	3,850		

Table 20: Results of biomass monitoring on the Lexington offset site using Brigalow Belt Future Beef pasture photostandards.

Photo monitoring		Brigalow Belt pastu	Brigalow Belt pasture photo standard type			
site*	RE type	Narrow-leaved ironbark	Downs country	Biomass (kg/ha)		
10	11.8.11a		\checkmark	2,578		
11	11.8.5	✓		3,625		
12	11.8.11		✓	3,850		
13	11.8.11		✓	3,015		
14	11.8.5	✓		3,625		
15	11.8.4	✓		2,000		
16	11.8.11		✓	2,578		
17	11.8.11		✓	2,578		
18	11.8.5	✓		2,250		
19	11.8.4	✓		2,000		
20	11.8.11		✓	5,040		

* taken from the 0 m point of the permanent habitat monitoring transects (Sites 01 - 12) and the SW corner of the standalone weed monitoring plots (Sites 13 - 20).

5.3.2 Biomass monitoring for sustainable grazing

While cattle were observed within the north-west of the offset area as part of the post-wet season survey, the results of the current biomass monitoring will be utilised as part of the Annual Land Condition-Pasture Budget Assessment, to be completed by Sojitz Blue. This will include an assessment of any proposed grazing management regimes in the offset area.

5.4 SIGNIFICANT SPECIES

Targeted surveys for *Dichanthium queenslandicum* (king blue-grass) and *D. setosum* (bluegrass) were not scheduled to be undertaken during the post-west season surveys at the Lexington offset site. Notwithstanding, neither species was detected as part of habitat condition assessments or opportunistically while traversing the site.

5.5 GENERAL SITE INSPECTION

No additional fencing or access tracks were noted within of the extent of traversed areas in May 2021. Any additional fencing and tracks outside of traversed areas were not able to be confirmed and will need to be supplied for updating as part of future monitoring events.

It is understood that a share-farming agreement is in place to limit the head of cattle per paddock. However, past evidence of cattle were observed in the grassland areas in the west of the Lexington offset area during the post-wet season monitoring.

Outside of the weed monitoring plots assessed in previous surveys, there were a number of areas where weed infestation was considered serious. Most noticeably was the extent and density of weeds within and adjacent the ephemeral drainage line and bore on Prickle Farm Road that flanks the western edge of the mining lease (ML 70376). In this area, the ephemeral drainage line was densely infested by Noogoora burr (*Xanthium occidentale*), with areas away from the drainage line characterised by dense, monospecific stands of *Parthenium hysterophorus*. Furthermore, there is still considerable coverage of *Vachellia farnesiana*

throughout the western Natural Grassland (RE 11.8.11) areas. Observations near the bore mentioned above have also confirmed an ongoing leak over at least the last two survey periods.

6 RESULTS: LEXINGTON RAIL LOOP OFFSET SITE

6.1 **BIOMASS MONITORING**

Brigalow Belt pasture photo standards were used for all biomass monitoring points. 'Downs country' photo standards were used for monitoring all twelve of the sites comprising RE 11.8.11 (Table 21). Where the observed biomass at a site was mid-way between two photos within a given biomass standard, the middle of the corresponding range was reported (i.e. observed biomass between 3,015 kg/ha and 3,850 kg/ha 'Downs country' photo standards was reported as 3,433 kg/ha).

Photo monitoring showed some variability in biomass of ground cover across all 12 photo monitoring sites. Overall, there was a high biomass for the grassland vegetation type, with a biomass ranging between 2,578 kg/ha and 5,040 kg/ha. The average biomass varied considerably between the offset paddocks, with the average biomass at Contours (5,040 kg/ha) greater than at Harry's (4,365 kg/ha) and greater again than at North Promenade (3,532 kg/ha).

Table 21: Results of biomass monitoring on the Lexington Rail Loop offset site using Brigalow Belt Future Beef
pasture photo standards.

		Brigalow Belt Future Beef pasture photo standard type	
Biomass monitoring site*	RE type	Downs country	Biomass kg/ha
LEXRL01 – North Promenade paddock	11.8.11	\checkmark	3,850
LEXRL02 – North Promenade paddock	11.8.11	\checkmark	3,850
LEXRL03 – Harry's paddock	11.8.11	\checkmark	3,015
LEXRL04 – Harry's paddock	11.8.11	\checkmark	5,040
LEXRL05 – Contours paddock	11.8.11	\checkmark	5,040
LEXRL06 – Contours paddock	11.8.11	\checkmark	5,040
LEXRL07 – Contours paddock	11.8.11	\checkmark	5,040
LEXRL08 – North Promenade paddock	11.8.11	\checkmark	3,850
LEXRL09 – North Promenade paddock	11.8.11	✓	2,578
LEXRL10 – Harry's paddock	11.8.11	\checkmark	5,040
LEXRL11 – Contours paddock	11.8.11	✓	5,040
LEXRL12 – Contours paddock	11.8.11	✓	5,040

* taken from the 0 m point of the permanent habitat monitoring transects (Sites LEXRL01 – LEXRL07) and the SW corner of the standalone weed monitoring plots (Sites LEXRL08 – LEXRL12).

6.2 GENERAL SITE INSPECTION

It is understood that a share-farming agreement is in place to limit the head of cattle per paddock. A herd of 5-6 horses was encountered on a number of days within Harry's Paddock, with evidence throughout the paddock of horse manure.

All fences bounding the paddocks were in good condition. Access to many of the monitoring sites in the Contours paddock was via an access track outside of and adjacent to the western boundary of the paddock, whereas access to monitoring sites in Harry's paddock was via Wurba Road and access to the North Promenade monitoring sites was via existing access tracks into Lexington.

7 REFERENCES

Auld, B. (2009). *Guidelines for Monitoring Weed Control and Recovery of Native Vegetation*. NSW Department of Primary Industries. Bureau of Rural Sciences, Orange NSW.

CO2 Australia (2017). *MNESMP Baseline Monitoring Report – Meteor Downs South Coal Mine Project*. CO2 Australia, Brisbane, QLD.

CO2 Australia (2018). *Lexington Offset Area Initial Baseline Monitoring Report – Meteor Downs South Project*. CO2 Australia, Brisbane, QLD.

CO2 Australia (2020). Post-wet Season Monitoring Report – Year 3 (2019/20). CO2 Australia, Brisbane, QLD.

Cooke, B., McPhee, S., & Hart, Q. (1990). *Rabbits: a threat to conservation & natural resource management, how to rapidly assess a rabbit problem and take action.* Australia Bureau of Rural Sciences, Canberra.

Department of Environment and Heritage Protection (DEHP). (2017). *Guide to determining terrestrial habitat quality – version 1.2.* Department of Environment and Heritage Protection (State of Queensland), Brisbane.

Queensland Herbarium (2021). *Regional Ecosystem Description Database (REDD). Version 12 (March 2021).* Queensland Government (Department of Environment and Science), Brisbane.

Department of the Environment, Water, Heritage and the Arts (DEWHA). (2010). *Survey Guidelines for Australia's Threatened Birds*. Department of the Environment, Water, Heritage and the Arts (Australian Government), Canberra.

Department of Environment, Water, Heritage and the Arts (DEWHA) (2010). *Survey Guidelines for Australia's Threatened Birds.* Department of Environment, Water, Heritage and the Arts, Canberra

Hone, J. (1988). Feral pig rooting in a mountain forest and woodland: Distribution, abundance and relationships with environmental variables. *Australian Journal of Ecology* **13**: 393-400

Mitchell, B., & Balogh, S. (2007a). *Monitoring Techniques for Vertebrate Pests: Wild Dogs*. NSW Department of Primary Industries. Bureau of Rural Sciences, Orange NSW.

Mitchell, B., & Balogh, S. (2007b). *Monitoring Techniques for Vertebrate Pests: Feral Pigs.* NSW Department of Primary Industries. Bureau of Rural Sciences, Orange NSW.

Northern Resources Consultants (NRC) (2019). *Lexington Offset Area – Pest and Biomass Monitoring – February 2019*. Northern Resources Consultants, Townsville, Qld.

SLR Consulting (SLR)(2019a). *Matters of National Environmental Significance Management Plan – Meteor Downs South Rail Loop Project*. A report prepared for Sojitz Coal Mining Pty Ltd. SLR Consulting, Townsville.

SLR Consulting (SLR)(2019b). *MDS Rail Loop Offset – Ecological Assessment Report*. A report prepared for Sojitz Coal Mining Pty Ltd. SLR Consulting, Townsville.

Threatened Species Scientific Committee (TSSC)(2009). *Commonwealth Listing Advice on Natural Grasslands of the Queensland Central Highlands and the northern Fitzroy Basin*. Department of the Environment, Water, Heritage and the Arts.

APPENDIX A MONITORING SITE LOCATIONS

MDS PROJECT SITE

Table A-1: Post-wet-season monitoring site locations and purpose on the MDS Project site.

Site	Start point name ^a	Easting	Northing	Star picket?	Biomass monitoring
01	H01_0m	641462	7304249	✓	✓
01	H01_50m	641462	7304301	✓	
02	H02_0m	640199	7303572	✓	✓
02	H02_50m	640203	7303621	✓	
03	H03_0m	638418	7303259	✓	✓
03	H03_50m	638425	7303308	✓	
04	H04_0m	637945	7300236	✓	\checkmark
04	H04_50m	637951	7300287	✓	
05	H05_0m	638426	7299836	✓	\checkmark
05	H05_50m	638420	7299885	✓	
06	H06_0m	637445	7299566	\checkmark	\checkmark
00	H06_50m	637447	7299615	\checkmark	
07	H07_0m	638426	7298876	\checkmark	\checkmark
07	H07_50m	638419	7298926	✓	
08	H08_0m	637032	7298735	\checkmark	\checkmark
08	H08_50m	637034	7298785	✓	
09	H09_0m	638387	7298599	✓	\checkmark
09	H09_50m	638380	7298648	\checkmark	
10	H10_0m	636412	7297523	\checkmark	\checkmark
10	H10_50m	636415	7297571	\checkmark	
11	W11_01	642941	7304772	\checkmark	\checkmark
12	W12_01	641428	7303597	\checkmark	\checkmark
13	W13_01	641896	7303196	\checkmark	\checkmark
14	W14_01	638991	7303038	\checkmark	\checkmark
15	W15_01	637797	7302245	\checkmark	\checkmark
16	W16_01	638556	7300785	\checkmark	\checkmark
17	W17_01	637029	7300184	✓	✓
18	W18_01	637401	7300321	✓	\checkmark
19	W19_01	638301	7301720	✓	\checkmark
20	W20_01	636740	7298674	\checkmark	✓

^a Start points with prefix H = habitat assessment sites (HXX_0m and HXX_50m corresponds to 0 m and 50 m point of north-south habitat assessment transect), W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

LEXINGTON OFFSET SITE

Table A-2: Post-wet season monitoring site locations and purpose on the Lexington offset site.

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES/MSES values	Photo monitoring	Biomass monitoring
01	H01_0m	604331	7353900	✓	Natural Grassland TEC, King-	\checkmark	✓
01	H01_50m	604331	7353950	✓	blue grass, bluegrass	✓	
02	H02_0m	603892	7353005	✓	Country pice of (courthours)	✓	✓
02	H02_50m	603908	7353053	✓	- Squatter pigeon (southern)	✓	
02	H03_0m	604380	7352477	~	Natural Grassland TEC, King-	✓	✓
03	H03_50m	604380	7352527	✓	blue grass, bluegrass	✓	
0.4	H04_0m	603904	7351691	✓	Squatter pigeon, Watercourse	✓	✓
04	H04_50m	603904	7351741	✓	RE 11.8.5	✓	
05	H05_0m	603426	7351001	✓	Coulottor pieces	✓	✓
05	H05_50m	603378	7351016	✓	Squatter pigeon	✓	
	H06_0m	604789	7351195	✓	Natural Grassland TEC, King-	✓	✓
06	H06_50m	604789	7351245	\checkmark	blue grass, bluegrass, Watercourse RE 11.8.11	✓	
	H07_0m	604649	7350750	✓		✓	✓
07	H07_50m	604649	7350800	✓	Squatter pigeon	✓	
	H08_0m	606488	7350361	✓		✓	✓
08	H08_50m	606488	7350411	~	- RE 11.8.11a	✓	
	H09_0m	607401	7351133	✓	RE 11.8.11a, Watercourse RE	✓	✓
09	H09_50m	607401	7351183	\checkmark	11.8.11a	✓	
4.0	H10_0m	607175	7351571	\checkmark	DE 14 0 14	✓	✓
10	H10_50m	607175	7351621	\checkmark	RE 11.8.11a	✓	
	H11_0m	609631	7353104	✓	с. н:	✓	✓
11	H11_50m	609631	7353154	✓	Squatter pigeon	✓	
10	H12_0m	610371	7353117	~	Natural Grassland TEC, King-	✓	✓
12	H12_50m	610371	7353167	~	blue grass, bluegrass	✓	
12	H13_0m	610237	7352515	~	Natural Grassland TEC, King-	✓	✓
13	H13_50m	610237	7352565	~	blue grass, bluegrass	✓	
14	W14_01	604883	7354051	~		✓	✓
15	W15_01	604543	7352984	~		✓	✓
16	W16_01	604604	7352289	~		✓	✓
17	W17_01	604503	7351656	~		✓	✓
18	W18_01	604074	7350714	~		✓	✓
19	W19_01	603812	7352530	✓		\checkmark	✓

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES/MSES values	Photo monitoring	Biomass monitoring
20	W20_01	610453	7352923	✓		\checkmark	\checkmark

^a Start points with prefix H = habitat assessment sites (HXX_0m and HXX_50m corresponds to 0 m and 50 m point of north-south habitat assessment transect), W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3).

MDS RAIL LOOP SITE

Table A-3: Post-wet-season monitoring site locations and purpose on the MDS Rail Loop site

Site	Start point name ^a	Easting	Northing	Star picket?	Habitat condition MNES values	Photo monitoring	Biomass monitoring
MDSRL01	H01_0m	645575	7303101	✓	 Natural Grasslands TEC, King blue-grass 	✓	
WIDSILLOI	H01_50m	645575	7303151	✓	Natural Glussianus TEC, King Sluce gluss	✓	✓
MDCDL02	H02_0m	646410	7303007	\checkmark	Natural Crasslands TEC, King blue, grass	\checkmark	
MDSRL02	H02_50m	646410	7303057	✓	 Natural Grasslands TEC, King blue-grass 	\checkmark	\checkmark
	H03_0m	646666	7303114	✓		✓	
MDSRL03	H03_50m	646666	7303164	✓	 Natural Grasslands TEC, King blue-grass 	\checkmark	✓
	H04_0m	646834	7303291	✓		✓	
MDSRL04	H04_50m	646834	7303341	✓	 Natural Grasslands TEC, King blue-grass 	\checkmark	✓
MDSRL05	W05_01	646409	7303255	✓	Natural Grasslands TEC, King blue-grass	✓	

^a Start points with prefix H = habitat assessment sites (HXX_0m and HXX_50m corresponds to 0 m and 50 m point of north-south habitat assessment transect), W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3). Start points for habitat assessment and weed monitoring plots are the same for sites 01 – 04, with site 05 only corresponding to a standalone weed monitoring plot.

LEXINGTON RAIL LOOP SITE

Table A-4: Post-wet-season monitoring site locations and purpose on the MDS Rail Loop site

Site	Start point name ^a		Easting		Northing	Star picket?	Photo monitoring	Biomass monitoring
LEXRL01	H01_0m	604390		735	5247	\checkmark	✓	✓
LEXILOI	H01_50m	604390		735	5297	✓	~	
LEXRL02	H02_0m	604758		7354	4797	\checkmark	~	\checkmark
LEARLUZ	H02_50m	604758		7354	4847	\checkmark	~	
	H03_0m	608595		735	5228	\checkmark	~	✓
LEXRL03	H03_50m	608595		7355278		✓	~	
	H04_0m	609262	609262		5036	✓	~	~
LEXRL04	H04_50m	609262		7355086		\checkmark	~	
	H05_0m	612011		7354	4575	\checkmark	~	~
LEXRL05	H05_50m	612011		7354625		\checkmark	~	
	H06_0m	611834		7354	4280	\checkmark	~	~
LEXRL06	H06_50m	611834		7354	4330	\checkmark	~	
	H07_0m	611215		7353	3711	\checkmark	~	~
LEXRL07	H07_50m	611215		7353	3761	\checkmark	~	
LEXRL08	W08_01	604126	7354813	✓	✓	\checkmark		
LEXRL09	W09_01	604978	7355196	✓	~	\checkmark		
LEXRL10	W010_01	609785	7355039	✓	✓	✓		
LEXRL11	W11_01	611630	7353857	✓	✓	✓		
LEXRL12	W12_01	612344	7354534	✓	✓	✓		

^a Start points with prefix H = habitat assessment sites (HXX_0m and HXX_50m corresponds to 0 m and 50 m point of north-south habitat assessment transect), W = start point (west) of each site's weed monitoring plot transects (WXX_01, WXX_02 and WXX_03 corresponds to transect 1, 2 and 3). Start points for habitat assessment and weed monitoring plots are the same for sites 01 - 07, with sites 08 - 12 only corresponding to a standalone weed monitoring plot.

APPENDIX B MDS RAIL LOOP SITE – YEAR 2 HABITAT CONDITION ASSESSMENT

The following tables provide details of the habitat condition assessments undertaken during the Year 2 monitoring period at the MDS Rail Loop site. Habitat condition scores were calculated in accordance with the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017). The data required to inform the site condition and flora species stocking rates were collected as part of detailed field surveys in May 2021. The site context score was calculated in accordance with the method prescribed in the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017), derived from ground-truthed regional ecosystem mapping within the extent of the MDS Rail Loop, as presented in the MDS Rail Loop ecological assessment (SLR 2019b).

Table B-1: Site condition raw data for each RE assessment unit

		e MDSRL0 RE 11.8.11			te MDSRL RE 11.8.1:			te MDSRL RE 11.8.1:		Site MDSRL04 RE 11.8.11			
Ecological condition indicators	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.11)	Score	
Recruitment of woody perennial species	-	-	-	-	-	-	-	-	-	-	-	-	
Native plant species richness - trees	-	-	-	-	-	-	-	-	-	-	-	-	
Native plant species richness - shrubs	-	-	-	-	-	-	-	-	-	-	-	-	
Native plant species richness - grasses	6	11	3	7	11	3	7	11	3	9	11	3	
Native plant species richness - forbs	5	17	3	3	17	2.5	5	17	3	4	17	2.5	
Tree canopy height	-	-	-	-	-	-	-	-	-	-	-	-	
Tree sub canopy height	-	-	-	-	-	-	-	-	-	-	-	-	
Tree canopy cover	-	-	-	-	-	-	-	-	-	-	-	-	
Tree sub canopy cover	-	-	-	-	-	-	-	-	-	-	-	-	
Shrub canopy cover	-	-	-	-	-	-	-	-	-	-	-	-	
Native perennial grass cover	30.6	43	3	32	43	3	34	43	3	16.6	43	1	
Organic litter	16	13	5	16.6	13	5	27.6	13	3	30	13	3	
Large eucalypt trees	-	-	-	-	-	-	-	-	-	-	-	-	
Large non-eucalypt trees	-	-	-	-	-		-	-	-	-	-		
Coarse woody debris	-	-	-	-	-	-	-	-	-	-	-	-	
Non-native plant cover	35.7	0	3	12.8	0	10	19.45	0	5	41.85	0	3	
Total			17			18.5			17			12.5	
/10			5.67			6.17			5.67			4.17	

Table B-2: Summary of the site condition, site context and fauna species habitat index scores used to calculate the habitat condition score for each RE assessment unit

	Site MDSRL01	Site MDSRL02	Site MDSRL03	Site MDSRL04
	RE 11.8.11	RE 11.8.11	RE 11.8.11	RE 11.8.11
MNES values	Natural Grasslands TEC, King blue-grass	Natural Grasslands TEC, King blue-grass	Natural Grasslands TEC, King blue-grass	Natural Grasslands TEC, King blue-grass
Site condition				
Recruitment of woody perennial species	-	-	-	-
Native plant species richness - trees	-	-	-	-
Native plant species richness - shrubs	-	-	-	-
Native plant species richness - grasses	3	3	3	3
Native plant species richness - forbs	3	2.5	3	2.5
Tree canopy height	-	-	-	-
Tree canopy cover	-	-	-	-
Shrub canopy cover	-	-	-	-
Native perennial grass cover	3	3	3	1
Organic litter	5	5	3	3
Large trees	-	-	-	-
Coarse woody debris	-	-	-	-
Non-native plant cover	3	5	5	3
Total of BioCondition attributes	17	18.5	17	12.5
MAX ecological condition score	30	30	30	30
Score /10	5.67	6.17	5.67	4.17
Site context				
Size of patch (fragmented bioregions)	10	10	10	10
Connectivity (fragmented bioregions)	5	5	5	5
Context (fragmented bioregions)	5	4	4	4
Distance to permanent watering point (intact bioregions)	-	-	-	-
Ecological corridors	6	4	4	4
Total of site context attributes	26	23	23	23
MAX site condition score	26	26	26	26
Score /10	10.00	8.85	8.85	8.85

Table B-3: Summary of the species stocking rate index for king blue-grass

Species stocking rate /3 ^a	Site MDSRL01	Site MDSRL02	Site MDSRL03	Site MDSRL04
	RE 11.8.11	RE 11.8.11	RE 11.8.11	RE 11.8.11
 King blue-grass Absent/not confirmed = 0 up to 2 tussocks = 2 between 3 and 20 tussocks = 2.5 20 or more tussocks = 3 	0	0	0	0

^a species stocking rate contributes 20% toward the habitat condition score for King blue-grass, with the remaining 80% made up of site condition and site context.

Table B-4: Summary of the MNES habitat condition score for each RE assessment unit

According to the history could be according to the second state of	Site MDSRL01	Site MDSRL02	Site MDSRL03	Site MDSRL04	Average habitat
Assessment unit habitat condition score /10	RE 11.8.11	RE 11.8.11	RE 11.8.11	RE 11.8.11	condition score
Natural Grasslands TEC – calculated based on site condition (/80) + site context (/26) converted to score out of 10	7.68	7.41	7.14	6.34	7.14
 King blue-grass calculated based on combination of: habitat quality (site condition + site context) - 80% species stocking rate (score out of 3) - 20% 	6.14	5.93	5.71	5.07	5.71

APPENDIX C LEXINGTON OFFSET SITE – YEAR 4 HABITAT CONDITION ASSESSMENT

The following tables provide details of the habitat condition assessments undertaken during the Year 4 monitoring period at the Lexington offset site. Habitat condition scores were calculated in accordance with the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017). The data required to inform the site condition and flora species stocking rates were collected as part of detailed field surveys in May 2021. The site context score was calculated in accordance with the method prescribed in the *Guide to Determining Terrestrial Habitat Quality version 1.2* (DEHP, 2017), derived from ground-truthed regional ecosystem mapping within the extent of the Lexington offset sites.

Table C-1: Site condition raw data for each RE assessment unit (Site 01-08)

	Site 01 RE 11.8.11												Site 05 RE 11.8.4			Site 06 RE 11.8.11			Site 07 RE 11.8.4			Site 08 RE 11.8.11a		
Ecological condition indicators	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.4)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.5)	Score	Raw data	Benchmark (11.8.4)	Score	Raw data	Benchmark (11.8.11)	Score	Raw data	Benchmark (11.8.4)	Score	Raw data	Benchmark (11.8.11a)	Score
Recruitment of woody perennial species		-	-	100	100	5		-	-	100	100	5	100	100	5		-	-	100	100	5	100	100	5
Native plant species richness - trees		-	-	6	4	5		-	-	3	2	5	8	4	5		-	-	14	4	5	8	7	5
Native plant species richness - shrubs		-	-	12	8	5		-	-	6	3	5	12	8	5		-	-	14	8	5	9	11	3
Native plant species richness - grasses	9	11	3	10	6	5	11	11	5	8	6	5	7	6	5	8	11	3	10	6	5	7	16	3
Native plant species richness - forbs	6	17	3	11	14	3	12	17	3	8	16	3	10	14	3	7	17	3	9	14	3	8	10	3
Tree canopy height		-	-	10.3	12	5		-	-	13.5	15	5	9.6	12	5		-	-	12	12	5	9	10	5
Tree sub canopy height		-						-		6	5						-							
Tree canopy cover		-	-	11.8	4.9	4		-	-	21.7	13	5	12.8	4.9	4		-	-	31.1	4.9	3	34.4	57.6	5
Tree sub canopy cover		-		10.2	5.9			-		3.5	4		6	5.9			-		16.4	5.9		15.6	0	
Shrub canopy cover		-	-	10.3	7.8	5		-	-	3.3	3	5	2	7.8	3		-	-	15.3	7.8	5	0.6	3.6	3
Native perennial grass cover	34	43	3	43	45	5	14.4	43	1	51	60	3	13	45	1	14.4	43	1	13.4	45	1	1.6	1.8	3
Organic litter	29	13	3	65	24	3	29	13	3	38.6	25	5	5	24	3	68	13	3	36.2	24	5	60.6	40.8	5
Large eucalypt trees		-	-	2	36	5		-	-	1	6	5	0	36	0		-	-	3	36	5	0	0	10
Large non-eucalypt trees		-						-			0						-					84	87	
Coarse woody debris		-	-	123	337	2		-	-	0	250	0	80	337	2		-	-	274	337	5	157	817	2
Non-native plant cover	51.9	0	0	0.4	0	10	2.1	0	10	41.75	0	3	34.75	0	3	11.15	0	5	1.4	0	10	26.75	0	3
Total			12			62			22			54			44			15			62			55
/10			4.00			7.75			7.33			6.75			5.50			5.00			7.75			6.88

Table C-2: Site condition raw data for each RE assessment unit (Site 09-13)

	Site 09 RE 11.8.12	la		Site 10 Site 11 RE 11.8.11a RE 11.8.5						Site 12 RE 11.8.11				Site 13 RE 11.8.11		
Ecological condition indicators	Raw data	Benchmark (11.8.11a)	score	Raw data	Benchmark (11.8.11a)	score	Raw data	Benchmark (11.8.11a)	Score	Raw data	Benchmark (11.8.11)	core	Raw data	Benchmark (11.8.11)	score	
Recruitment of woody perennial species	100	100	5	100	100	5	100	100	5		-	-		-	-	
Native plant species richness - trees	16	7	5	10	7	5	9	2	5		-	-		-	-	
Native plant species richness - shrubs	8	11	3	3	11	3	6	3	5		-	-		-	-	
Native plant species richness - grasses	5	16	3	6	16	3	8	6	5	10	11	5	9	11	3	
Native plant species richness - forbs	8	10	3	6	10	3	8	16	3	6	17	3	11	17	3	
Tree canopy height	16.5	10	5	10.2	10	5	14	15	5		-	-		-	-	
Tree sub canopy height							5.6	5			-			-		
Tree canopy cover	38.3	57.6	5	14.4	57.6	2	35.6	13	2.5		-	-		-	-	
Tree sub canopy cover	66.2	0		10.5	0		1.5	4			-			-		
Shrub canopy cover	14	3.6	3	0.7	3.6	3	11.2	3	3		-	-		-	-	
Native perennial grass cover	16	1.8	5	21	1.8	5	5.6	60	0	43.4	43	5	44	43	5	
Organic litter	55.4	40.8	5	36.6	40.8	5	19.6	25	5	40.6	13	3	33.75	13	3	
Large eucalypt trees	5	0	10	1	0	5	6	6	10		-	-		-	-	
Large non-eucalypt trees	72	87		38	87			0			-			-		
Coarse woody debris	305	817	2	238	817	2	204	250	5		-	-		-	-	
Non-native plant cover	29.1	0	3	51.75	0	0	71.45	0	0	10.3	0	5	1	0	10	
Total			57			46			53.5			21			24	
/10			7.13			5.75			6.69			7.00			8.00	

	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10
	RE 11.8.11	RE 11.8.4	RE 11.8.11	RE 11.8.5	RE 11.8.4	RE 11.8.11	RE 11.8.4	RE 11.8.11a	RE 11.8.11a	RE 11.8.1
MNES/MSES values	Natural Grassland TEC, King-blue grass, bluegrass	Squatter pigeon	Natural Grassland TEC, King-blue grass, bluegrass	Squatter pigeon, Watercourse RE 11.8.5	Squatter pigeon	Natural Grassland TEC, King-blue grass, bluegrass, Watercourse RE	11.8.11 Squatter pigeon	RE 11.8.11a	RE 11.8.11a, Watercourse RE 11.8.11a	RE 11.8.11a
Site condition										
Recruitment of woody perennial species	-	5	-	5	5	-	5	5	5	5
Native plant species richness - trees	-	5	-	5	5	-	5	5	5	5
Native plant species richness - shrubs	-	5	-	5	5	-	5	3	3	3
Native plant species richness - grasses	3	5	5	5	5	3	5	3	3	3
Native plant species richness - forbs	3	3	3	3	3	3	3	3	3	3
Tree canopy height	-	5	-	5	5	-	5	5	5	5
Tree canopy cover	-	4	-	5	4	-	3	5	5	2
Shrub canopy cover	-	5	-	5	3	-	5	3	3	3
Native perennial grass cover	3	5	1	3	1	1	1	3	5	5
Organic litter	3	3	3	5	3	3	5	5	5	5
Large trees	-	5	-	5	0	-	5	10	10	5
Coarse woody debris	-	2	-	0	2	-	5	2	2	2
Non-native plant cover	0	10	10	3	3	5	10	3	3	0
Total of BioCondition attributes	12	62	22	54	44	15	62	55	57	46
MAX ecological condition score	30	80	30	80	80	30	80	80	80	80
Score /10	4.00	7.75	7.33	6.75	5.50	5.00	7.75	6.88	7.13	5.75
Site context									·	
Size of patch (fragmented bioregions)	10	10	10	10	10	10	10	5	5	5
Connectivity (fragmented bioregions)	5	5	5	5	5	5	5	0	0	0
Context (fragmented bioregions)	5	5	5	5	5	5	5	2	2	2
Distance to permanent watering point (intact bioregions)	-	-	-	-	-	-	-	-	-	-
Ecological corridors	6	6	6	6	6	6	6	0	0	0
Total of site context attributes	26	26	26	26	26	26	26	7	7	7
MAX site context score	26	26	26	26	26	26	26	26	26	26
Score /10	10.00	10.00	10.00	10.00	10.00	10.00	10.00	2.69	2.69	2.69
Fauna species habitat index					·	1				·
Threats to species	-	7	-	7	7	-	7	-	-	-
Quality and availability of food and foraging habitat	-	5	-	5	5	-	5	-	-	-

נ	Site 11	Site 12	Site 13
8.11a	RE 11.8.5	RE 11.8.11	RE 11.8.11
RE 11.8.11a	Squatter pigeon (southern)	Natural Grassland TEC, King-blue grass, bluegrass	Natural Grassland TEC, King-blue grass, bluegrass
	5	-	-
	5	-	-
	5	-	-
	5	5	3
	3	3	3
	5	-	-
	2.5	-	-
	3	-	-
	0	5	5
	5	3	3
	10	-	-
	5	-	-
	0	5	10
	53.5	21	24
	80	30	30
	6.69	7.00	8.00
	10	10	10
	5	5	5
	5	4	4
	-	-	-
	0	0	0
	20	19	19
	26	26	26
	7.69	7.31	7.31
	7	-	-
	5	-	-

	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10	Site 11	Site 12	Site 13
	RE 11.8.11	RE 11.8.4	RE 11.8.11	RE 11.8.5	RE 11.8.4	RE 11.8.11	RE 11.8.4	RE 11.8.11a	RE 11.8.11a	RE 11.8.11a	RE 11.8.5	RE 11.8.11	RE 11.8.11
MNES/MSES values	Natural Grassland TEC, King-blue grass, bluegrass	Squatter pigeon	Natural Grassland TEC, King-blue grass, bluegrass	Squatter pigeon, Watercourse RE 11.8.5	Squatter pigeon	Natural Grassland TEC, King-blue grass, bluegrass, Watercourse RE	Squatter pigeon	RE 11.8.11a	RE 11.8.11a, Watercourse RE 11.8.11a	RE 11.8.11a	Squatter pigeon (southern)	Natural Grassland TEC, King-blue grass, bluegrass	Natural Grassland TEC, King-blue grass, bluegrass
Quality and availability of shelter	-	10	-	10	5	-	5	-	-	-	5	-	-
Species mobility capacity	-	10	-	10	10	-	10	-	-	-	10	-	-
Role of site location to species overall population in the state	-	4	-	4	4	-	4	-	-	-	4	-	-
Total of fauna species habitat index	0	36	0	36	31	0	31	0	0	0	31	0	0
MAX fauna habitat index score	50	50	50	50	50	50	50	50	50	50	50	50	50
Score /10	0.00	7.20	0.00	7.20	6.20	0.00	6.20	0.00	0.00	0.00	6.20	0.00	0.00

Table C-4: Summary of the species stocking rate index for king blue-grass

Species stacking gate /28	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10	Site 11	Site 12	Site 13
Species stocking rate /3 ^a	RE 11.8.11	RE 11.8.4	RE 11.8.11	RE 11.8.5	RE 11.8.4	RE 11.8.11	RE 11.8.4	RE 11.8.11a	RE 11.8.11a	RE 11.8.11a	RE 11.8.5	RE 11.8.11	RE 11.8.11
King blue-grass	0	-	0	-	-	0	-	-	-	-	-	0	0
Bluegrass	0	-	0	-	-	0	-	-	-	-	-	0	0

^a species stocking rate contributes 20% toward the habitat condition score for King blue-grass, with the remaining 80% made up of site condition and site context.

Table C-5: Summary of the MNES/MSES habitat condition score for each RE assessment unit

	Site 01	Site 02	Site 03	Site 04	Site 05	Site 06	Site 07	Site 08	Site 09	Site 10	Site 11	Site 12	Site 13	
Assessment unit habitat quality score /10	RE 11.8.11	RE 11.8.4	RE 11.8.11	RE 11.8.5	RE 11.8.4	RE 11.8.11	RE 11.8.4	RE 11.8.11a	RE 11.8.11a	RE 11.8.11a	RE 11.8.5	RE 11.8.11	RE 11.8.11	FINAL MNES/MSES habitat quality score
Natural Grasslands TEC	6.79	-	8.57	-	-	7.32	-	-	-	-	-	7.14	7.68	7.50
King blue-grass	5.43	-	6.86	-	-	5.86	-	-	-	-	-	5.71	6.14	6.00
Bluegrass	5.43	-	6.86	-	-	5.86	-	-	-	-	-	5.71	6.14	6.00
Squatter pigeon	-	7.95	-	7.44	6.47	-	7.63	-	-	-	6.70	-	-	7.24
Of concern RE 11.8.11a (BVG 21b)	-	-	-	-	-	-	-	5.85	6.51	5.00	-	-	-	5.79
Watercourse RE 11.8.5 (BVG 11a)	-	-	-	7.55	-	-	-	-	-	-	-	-	-	7.55
Watercourse RE 11.8.11 (BVG 30b)	-	-	-	-	-	7.32	-	-	-	-	-	-	-	7.32
Watercourse RE 11.8.11a (BVG 21b)	-	-	-	-	-	-	-	-	6.51	5.00	-	-	-	5.75

APPENDIX D MDS PROJECT SITE PHOTO MONITORING

SITE 01 – H01_0M

Photo D-1 North

Photo D-2 East

Photo D-3 South

Photo D-4 West

Photo D-5 Ground

SITE 01 - H01_50M

Photo D-6 North

Photo D-7 East

Photo D-8 South

Photo D-9 West

Photo D-10 Ground

SITE 02 – H02_0 M

Photo D-11 North

Photo D-12 East

Photo D-13 South

Photo D-14 West

Photo D-15 Ground

SITE 02 – H02_50M

Photo D-16 North

Photo D-17 East

Photo D-18 South

Photo D-19 West

Photo D-20 Ground

SITE 03 – H03_0M

Photo D-21 North

Photo D-22 East

Photo D-23 South

Photo D-24 West

Photo D-25 Ground

SITE 03 – H03_50M

Photo D-26 North

Photo D-27 East

Photo D-28 South

Photo D-29 West

Photo D-30 Ground

SITE 04 – H04_0M

Photo D-31 North

Photo D-32 East

Photo D-33 South

Photo D-34 West

Photo D-35 Ground

SITE 04 - H04_50M

Photo D-36 North

Photo D-37 East

Photo D-38 South

Photo D-39 West

Photo D-40 Ground

SITE 05 – H05_0M

Photo D-41 North

Photo D-42 East

Photo D-43 South

Photo D-44 West

Photo D-45 Ground

SITE 05 – H05_50M

Photo D-46 North

Photo D-47 East

Photo D-48 South

Photo D-49 West

Photo D-50 Ground

SITE 06 - H06_0M

Photo D-51 North

Photo D-52 East

Photo D-53 South

Photo D-54 West

Photo D-55 Ground

SITE 06 - H06_50M

Photo D-56 North

Photo D-57 East

Photo D-58 South

Photo D-59 West

Photo D-60 Ground

SITE 07 – H07_0M

Photo D-61 North

Photo D-62 East

Photo D-63 South

Photo D-64 West

Photo D-65 Ground

SITE 07 – H07_50M

Photo D-66 North

Photo D-67 East

Photo D-68 South

Photo D-69 West

Photo D-70 Ground

SITE 08 – H08_0M

Photo D-71 North

Photo D-72 East

Photo D-73 South

Photo D-74 West

Photo D-75 Ground

SITE 08 - H08_50M

Photo D-76 North

Photo D-77 East

Photo D-78 South

Photo D-79 West

Photo D-80 Ground

SITE 09 – H09_0M


```
Photo D-81 North
```

Photo D-82 East

Photo D-83 South

Photo D-84 West

Photo D-85 Ground

SITE 09 – H09_50M


```
Photo D-86 North
```

Photo D-87 East

Photo D-88 South

Photo D-89 West

Photo D-90 Ground

SITE 10 – H10_0M

Photo D-91 North

Photo D-92 East

Photo D-93 South

Photo D-94 West

Photo D-95 Ground

SITE 10 - H10_50M

Photo D-96 North

Photo D-97 East

Photo D-98 South

Photo D-99 West

Photo D-100 Ground

SITE 11 – W11_0

Photo D-101 North

Photo D-102 East

Photo D-103 South

Photo D-104 West

Photo D-105 Ground

SITE 12 – W12_0

Photo D-106 North

Photo D-107 East

Photo D-108 South

Photo D-109 West

Photo D-110 Ground

SITE 13 – W13_0

Photo D-111 North

Photo D-112 East

Photo D-113 South

Photo D-114 West

Photo D-115 Ground

SITE 14 – W14_0

Photo D-116 North

Photo D-117 East

Photo D-118 South

Photo D-119 West

Photo D-120 Ground

SITE 15 – W15_0

Photo D-121 North

Photo D-122 East

Photo D-123 South

Photo D-124 West

Photo D-125 Ground

SITE 16 – W16_0

Photo D-126 North

Photo D-127 East

Photo D-128 South

Photo D-129 West

Photo D-130 Ground

SITE 17 – W17_0

Photo D-131 North

Photo D-132 East

Photo D-133 South

Photo D-134 West

Photo D-135 Ground

SITE 18 – W18_0

Photo D-136 North

Photo D-137 East

Photo D-138 South

Photo D-139 West

Photo D-140 Ground

SITE 19 – W19_0

Photo D-141 North

Photo D-142 East

Photo D-143 South

Photo D-144 West

Photo D-145 Ground

SITE 20 – W20_0

Photo D-146 North

Photo D-147 East

Photo D-148 South

Photo D-149 West

Photo D-150 Ground

APPENDIX E MDS RAIL LOOP SITE PHOTO MONITORING

SITE MDSRL01 – H01_0M

Photo E-1 North

Photo E-2 East

Photo E-3 South

Photo E-4 West

Photo E-5 Ground

SITE MDSRL01 – H01_50M

Photo E-6 North

Photo E-7 East

Photo E-8 South

Photo E-9 West

Photo E-10 Ground

SITE MDSRL02 – H02_0 M

Photo E-11 North

Photo E-12 East

Photo E-13 South

Photo E-14 West

Photo E-15 Ground

SITE MDSRL02 – H02_50M

Photo E-16 North

Photo E-17 East

Photo E-18 South

Photo E-19 West

Photo E-20 Ground

SITE MDSRL03 – H03_0M

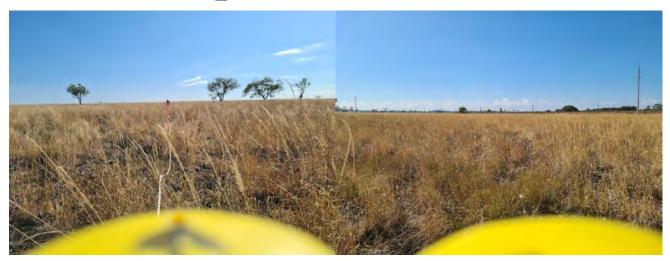


Photo E-21 North

Photo E-22 East

Photo E-23 South

Photo E-24 West

Photo E-25 Ground

SITE MDSRL03 – H03_50M

Photo E-26 North

Photo E-27 East

Photo E-28 South

Photo E-29 West

Photo E-30 Ground

SITE MDSRL04 – H04_0M

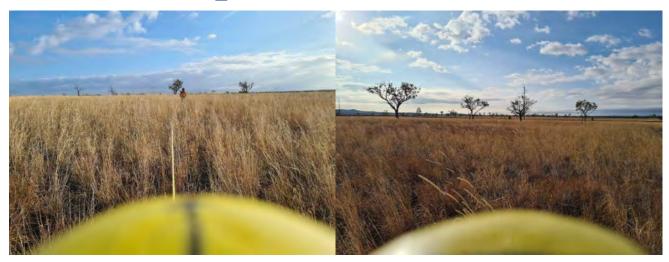


Photo E-31 North

Photo E-32 East

Photo E-33 South

Photo E-34 West

Photo E-35 Ground

SITE MDSRL04 – H04_50M

Photo E-36 North

Photo E-37 East

Photo E-38 South

Photo E-39 West

Photo E-40 Ground

SITE MDSRL05 – W05_0

Photo E-41 North

Photo E-42 East

Photo E-43 South

Photo E-44 West

Photo E-45 Ground

APPENDIX F LEXINGTON OFFSET SITE PHOTO MONITORING

SITE 01 – H01_0M

Photo F-1 North

Photo F-2 East

Photo F-3 South

Photo F-4 West

Photo F-5 Ground

SITE 01 - H01_50M

Photo F-6 North

Photo F-7 East

Photo F-8 South

Photo F-9 West

Photo F-10 Ground

SITE 02 – H02_0M

Photo F-11 North

Photo F-12 East

Photo F-13 South

Photo F-14 West

Photo F-15 Ground

SITE 02 – H02_50M

Photo F-16 North

Photo F-17 East

Photo F-18 South

Photo F-19 West

Photo F-20 Ground

SITE 03 – H03_0M

Photo F-21 North

Photo F-22 East

Photo F-23 South

Photo F-24 West

Photo F-25 Ground

SITE 03 – H03_50M

Photo F-26 North

Photo F-27 East

Photo F-28 South

Photo F-29 West

Photo F-30 Ground

SITE 04 – H04_0M

Photo F-31 North

Photo F-32 East

Photo F-33 South

Photo F-34 West

Photo F-35 Ground

SITE 04 - H04_50M

Photo F-36 North

Photo F-37 East

Photo F-38 South

Photo F-39 West

Photo F-40 Ground

SITE 05 – H05_0M

Photo F-41 North

Photo F-42 East

Photo F-43 South

Photo F-44 West

Photo F-45 Ground

SITE 05 – H05_50M

Photo F-46 North

Photo F-47 East

Photo F-48 South

Photo F-49 West

Photo F-50 Ground

SITE 06 - H06_0M

Photo F-51 North

Photo F-52 East

Photo F-53 South

Photo F-54 West

Photo F-55 Ground

SITE 06 - H06_50M

Photo F-56 North

Photo F-57 East

Photo F-58 South

Photo F-59 West

Photo F-60 Ground

SITE 07 – H07_0M

Photo F-61 North

Photo F-62 East

Photo F-63 South

Photo F-64 West

Photo F-65 Ground

SITE 07 – H07_50M

Photo F-66 North

Photo F-67 East

Photo F-68 South

Photo F-69 West

Photo F-70 Ground

SITE 08 - H08_0M

Photo F-71 North

Photo F-72 East

Photo F-73 South

Photo F-74 West

Photo F-75 Ground

SITE 08 - H08_50M

Photo F-76 North

Photo F-77 East

Photo F-78 South

Photo F-79 West

Photo F-80 Ground

SITE 09 – H09_0M

Photo F-81 North

Photo F-82 East

Photo F-83 South

Photo F-84 West

Photo F-85 Ground

SITE 09 – H09_50M

Photo F-86 North

Photo F-87 East

Photo F-88 South

Photo F-89 West

Photo F-90 Ground

SITE 10 - H10_0M

Photo F-91 North

Photo F-92 East

Photo F-93 South

Photo F-94 West

Photo F-95 Ground

SITE 10 - H10_50M

Photo F-96 North

Photo F-97 East

Photo F-98 South

Photo F-99 West

Photo F-100 Ground

SITE 11 – H11_0M

Photo F-101 North

Photo F-102 East

Photo F-103 South

Photo F-104 West

Photo F-105 Ground

SITE 11 – H11_50M

Photo F-106 North

Photo F-107 East

Photo F-108 South

Photo F-109 West

Photo F-110 Ground

SITE 12 – H12_0M

Photo F-111 North

Photo F-112 East

Photo F-113 South

Photo F-114 West

Photo F-115 Ground

SITE 12 – H12_50M

Photo F-116 North

Photo F-117 East

Photo F-118 South

Photo F-119 West

Photo F-120 Ground

SITE 13 – H13_0M

Photo F-121 North

Photo F-122 East

Photo F-123 South

Photo F-124 West

Photo F-125 Ground

SITE 13 – H13_50M

Photo F-126 North

Photo F-127 East

Photo F-128 South

Photo F-129 West

Photo F-130 Ground

SITE 14 – W14_0

Photo F-131 North

Photo F-132 East

Photo F-133 South

Photo F-134 West

Photo F-135 Ground

SITE 15 – W15_0

Photo F-136 North

Photo F-137 East

Photo F-138 South

Photo F-139 West

Photo F-140 Ground

SITE 16 – W16_0

Photo F-141 North

Photo F-142 East

Photo F-143 South

Photo F-144 West

Photo F-145 Ground

SITE 17 – W17_0

Photo F-146 North

Photo F-147 East

Photo F-148 South

Photo F-149 West

Photo F-150 Ground

SITE 18 – W18_0

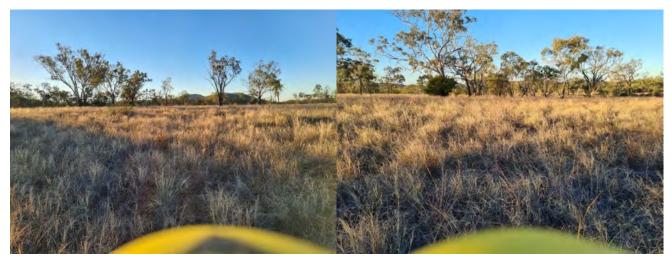


Photo F-151 North

Photo F-152 East

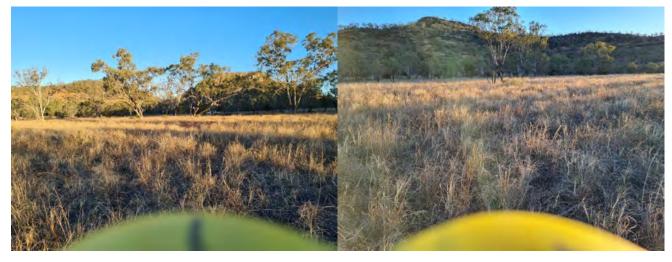


Photo F-153 South

Photo F-154 West

Photo F-155 Ground

SITE 19 – W19_0

Photo F-156 North

Photo F-157 East

Photo F-158 South

Photo F-159 West

Photo F-160 Ground

SITE 20 – W20_0

Photo F-161 North

Photo F-162 East

Photo F-163 South

Photo F-164 West

Photo F-165 Ground

APPENDIX G LEXINGTON RAIL LOOP OFFSET SITE PHOTO MONITORING

SITE LEXRL01 – H01_0M

Photo G-3 South

Photo G-4 West

SITE LEXRL01 – H01_50M

Photo G-6 North

Photo G-7 East

Photo G-8 South

Photo G-9 West

Photo G-10 Ground

SITE LEXRLO2 – HO2_OM

Photo G-11 North

Photo G-12 East

Photo G-13 South

Photo G-14 West

Photo G-15 Ground

SITE LEXRLO2 – H02_50M

Photo G-16 North

Photo G-17 East

Photo G-18 South

Photo G-19 West

Photo G-20 Ground

SITE LEXRLO3 – HO3_OM

Photo G-21 North

Photo G-22 East

Photo G-23 South

Photo G-24 West

Photo G-25 Ground

SITE LEXRL03 – H03_50M

Photo G-26 North

Photo G-27 East

Photo G-28 South

Photo G-29 West

Photo G-30 Ground

SITE LEXRL04 – H04_0M

Photo G-31 North

Photo G-32 East

Photo G-33 South

Photo G-34 West

Photo G-35 Ground

SITE LEXRLO4 – H04_50M

Photo G-36 North

Photo G-37 East

Photo G-38 South

Photo G-39 West

Photo G-40 Ground

SITE LEXRL05 – H05_0M

Photo G-41 North

Photo G-42 East

Photo G-43 South

Photo G-44 West

Photo G-45 Ground

SITE LEXRL05 – H05_50M

Photo G-46 North

Photo G-47 East

Photo G-48 South

Photo G-49 West

Photo G-50 Ground

SITE LEXRLO6 – H06_0M

Photo G-51 North

Photo G-52 East

Photo G-53 South

Photo G-54 West

Photo G-55 Ground

SITE LEXRLO6 – H06_50M

Photo G-56 North

Photo G-57 East

Photo G-58 South

Photo G-59 West

Photo G-60 Ground

SITE LEXRL07 – H07_0M

Photo G-61 North

Photo G-62 East

Photo G-63 South

Photo G-64 West

Photo G-65 Ground

SITE LEXRL07 – H07_50M

Photo G-66 North

Photo G-67 East

Photo G-68 South

Photo G-69 West

Photo G-70 Ground

SITE LEXRL08 – W08_0

Photo G-71 North

Photo G-72 East

Photo G-73 South

Photo G-74 West

Photo G-75 Ground

SITE LEXRL09 – W09_0

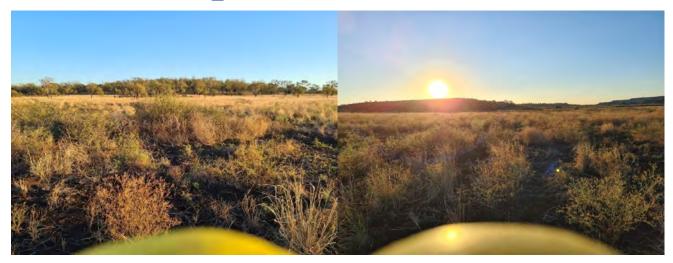


Photo G-76 North

Photo G-77 East

Photo G-78 South

Photo G-79 West

Photo G-80 Ground

SITE LEXRL10 – W10_0

Photo G-81 North

Photo G-82 East

Photo G-83 South

Photo G-84 West

Photo G-85 Ground

SITE LEXRL11 – W11_0

Photo G-86 North

Photo G-87 East

Photo G-88 South

Photo G-89 West

Photo G-90 Ground

SITE LEXRL12 – W12_0

Photo G-91 North

Photo G-92 East

Photo G-95 Ground